forked from SqueezeBits/QUICK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
112 lines (102 loc) · 3.3 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import sys
import torch
import platform
from pathlib import Path
from setuptools import setup, find_packages
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
os.environ["CC"] = "g++"
os.environ["CXX"] = "g++"
QUICK_VERSION = "0.1.0"
PYPI_BUILD = os.getenv("PYPI_BUILD", "0") == "1"
HAS_CUDA = torch.cuda.is_available()
if not PYPI_BUILD and HAS_CUDA:
try:
CUDA_VERSION = "".join(os.environ.get("CUDA_VERSION", torch.version.cuda).split("."))[:3]
QUICK_VERSION += f"+cu{CUDA_VERSION}"
except Exception as ex:
raise RuntimeError("Your system must have an Nvidia GPU for installing AutoAWQ")
common_setup_kwargs = {
"version": QUICK_VERSION,
"name": "quick",
"author": "SqueezeBits",
"license": "MIT",
"python_requires": ">=3.8.0",
"description": "QUICK implements a collection of novel CUDA kernels designed for faster inference of weight-only quantized LLMS.",
"long_description": (Path(__file__).parent / "README.md").read_text(encoding="UTF-8"),
"long_description_content_type": "text/markdown",
"url": "https://github.com/SqueezeBits/QUICK",
"keywords": ["awq", "autoawq", "quick", "quantization", "transformers"],
"platforms": ["linux", "windows"],
"classifiers": [
"Environment :: GPU :: NVIDIA CUDA :: 11.8",
"Environment :: GPU :: NVIDIA CUDA :: 12",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: C++",
]
}
requirements = [
"torch>=2.0.1",
"transformers>=4.35.0",
"tokenizers>=0.12.1",
"accelerate",
"datasets",
]
# CUDA kernels
if platform.system().lower() != "darwin" and HAS_CUDA:
requirements.append("autoawq-kernels")
# QUICK kernels
extra_compile_args = {
"cxx": ["-g", "-O3", "-fopenmp", "-lgomp", "-std=c++17", "-DENABLE_BF16"],
"nvcc": [
"-O3",
"-std=c++17",
"-DENABLE_BF16",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
"--threads=8",
],
}
extensions = []
if HAS_CUDA:
extensions.append(
CUDAExtension(
"quick_kernels",
[
"csrc/pybind.cpp",
"csrc/gemm_cuda_quick.cu",
],
extra_compile_args=extra_compile_args,
)
)
additional_setup_kwargs = {
"ext_modules": extensions,
"cmdclass": {"build_ext": BuildExtension},
}
common_setup_kwargs.update(additional_setup_kwargs)
setup(
packages=find_packages(),
install_requires=requirements,
extras_require={
"eval": [
"lm_eval>=0.4.0",
"tabulate",
"protobuf",
"evaluate",
"scipy"
],
},
**common_setup_kwargs
)