forked from cnkuangshi/LightCTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
170 lines (154 loc) · 5.78 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//
// main.cpp
// LightCTR
//
// Created by SongKuangshi on 2017/9/23.
// Copyright © 2017年 SongKuangshi. All rights reserved.
//
#include <iostream>
#include "LightCTR/common/time.h"
#include "LightCTR/common/system.h"
#include "LightCTR/fm_algo_abst.h"
#include "LightCTR/train/train_fm_algo.h"
#include "LightCTR/train/train_ffm_algo.h"
#include "LightCTR/train/train_nfm_algo.h"
#include "LightCTR/predict/fm_predict.h"
#include "LightCTR/gbm_algo_abst.h"
#include "LightCTR/train/train_gbm_algo.h"
#include "LightCTR/predict/gbm_predict.h"
#include "LightCTR/em_algo_abst.h"
#include "LightCTR/train/train_gmm_algo.h"
#include "LightCTR/train/train_tm_algo.h"
#include "LightCTR/train/train_embed_algo.h"
#include "LightCTR/dl_algo_abst.h"
#include "LightCTR/train/train_cnn_algo.h"
#include "LightCTR/train/train_rnn_algo.h"
#include "LightCTR/train/train_vae_algo.h"
using namespace std;
// Attention to check config in GradientUpdater
#define TEST_NFM
/* Recommend Configuration
* FM/FFM/NFM batch=50 lr=0.1
* VAE batch=10 lr=0.1
* CNN batch=10 lr=0.1
* RNN batch=10 lr=0.03
*/
size_t GradientUpdater::__global_minibatch_size(50);
double GradientUpdater::__global_learning_rate(0.1);
double GradientUpdater::__global_ema_rate(0.99);
double GradientUpdater::__global_sparse_rate(0.6);
double GradientUpdater::__global_lambdaL2(0.001f);
double GradientUpdater::__global_lambdaL1(1e-5);
double MomentumUpdater::__global_momentum(0.8);
double MomentumUpdater::__global_momentum_adam2(0.999);
bool GradientUpdater::__global_bTraining(true);
int main(int argc, const char * argv[]) {
int T = 200;
#ifdef TEST_FM
FM_Algo_Abst *train = new Train_FM_Algo(
"./data/train_sparse.csv",
/*epoch*/3,
/*factor_cnt*/10);
FM_Predict pred(train, "./data/train_sparse.csv", true);
#elif defined TEST_FFM
FM_Algo_Abst *train = new Train_FFM_Algo(
"./data/train_sparse.csv",
/*epoch*/1,
/*factor_cnt*/4,
/*field*/68);
FM_Predict pred(train, "./data/train_sparse.csv", true);
#elif defined TEST_NFM
FM_Algo_Abst *train = new Train_NFM_Algo(
"./data/train_sparse.csv",
/*epoch*/3,
/*factor_cnt*/10,
/*hidden_layer_size*/32);
FM_Predict pred(train, "./data/train_sparse.csv", true);
#elif defined TEST_GBM
GBM_Algo_Abst *train = new Train_GBM_Algo(
"./data/train_dense.csv",
/*epoch*/1,
/*maxDepth*/12,
/*minLeafHess*/1,
/*multiclass*/10);
GBM_Predict pred(train, "./data/train_dense.csv", true);
#elif defined TEST_GMM
EM_Algo_Abst<vector<double> > *train =
new Train_GMM_Algo(
"./data/train_cluster.csv",
/*epoch*/50, /*cluster_cnt*/100,
/*feature_cnt*/10);
T = 1;
#elif defined TEST_TM
EM_Algo_Abst<vector<vector<double>* > > *train =
new Train_TM_Algo(
"./data/train_topic.csv",
"./data/vocab.txt",
/*epoch*/50,
/*topic*/5,
/*word*/5000);
T = 1;
#elif defined TEST_EMB
Train_Embed_Algo *train =
new Train_Embed_Algo(
"./data/vocab.txt",
"./data/train_text.txt",
/*epoch*/50,
/*window_size*/6,
/*emb_dimention*/100,
/*vocab_cnt*/5000);
T = 1;
#elif defined TEST_CNN
DL_Algo_Abst<Square<double, int>, Tanh, Softmax> *train =
new Train_CNN_Algo<Square<double, int>, Tanh, Softmax>(
"./data/train_dense.csv",
/*epoch*/300,
/*feature_cnt*/784,
/*hidden_size*/50,
/*multiclass_output_cnt*/10);
T = 1;
#elif defined TEST_VAE
Train_VAE_Algo<Square<double, double>, Sigmoid> *train =
new Train_VAE_Algo<Square<double, double>, Sigmoid>(
"./data/train_dense.csv",
/*epoch*/600,
/*feature_cnt*/784,
/*hidden*/60,
/*gauss*/20);
T = 1;
#elif defined TEST_RNN
DL_Algo_Abst<Square<double, int>, Tanh, Softmax> *train =
new Train_RNN_Algo<Square<double, int>, Tanh, Softmax>(
"./data/train_dense.csv",
/*epoch*/600,
/*feature_cnt*/784,
/*hidden_size*/50,
/*recurrent_cnt*/28,
/*multiclass_output_cnt*/10);
T = 1;
#endif
while (T--) {
train->Train();
#if (defined TEST_FM) || (defined TEST_FFM) || (defined TEST_NFM) || (defined TEST_GBM)
// Notice whether the algorithm have Predictor, otherwise Annotate it.
pred.Predict("");
#endif
#ifdef TEST_EMB
// Notice, word embedding vector multiply 10 to cluster
EM_Algo_Abst<vector<double> > *cluster =
new Train_GMM_Algo(
"./output/word_embedding.txt",
50,
50,
100,
/*scale*/10);
cluster->Train();
shared_ptr<vector<int> > ans = cluster->Predict();
train->EmbeddingCluster(ans, 50);
#endif
cout << "------------" << endl;
}
train->saveModel(0);
delete train;
return 0;
}