forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBPSectionOrdererBase.cpp
374 lines (341 loc) · 14.7 KB
/
BPSectionOrdererBase.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//===- BPSectionOrdererBase.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lld/Common/BPSectionOrdererBase.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/BalancedPartitioning.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/VirtualFileSystem.h"
#define DEBUG_TYPE "bp-section-orderer"
using namespace llvm;
using namespace lld;
using UtilityNodes = SmallVector<BPFunctionNode::UtilityNodeT>;
static SmallVector<std::pair<unsigned, UtilityNodes>> getUnsForCompression(
ArrayRef<const BPSectionBase *> sections,
const DenseMap<const void *, uint64_t> §ionToIdx,
ArrayRef<unsigned> sectionIdxs,
DenseMap<unsigned, SmallVector<unsigned>> *duplicateSectionIdxs,
BPFunctionNode::UtilityNodeT &maxUN) {
TimeTraceScope timeScope("Build nodes for compression");
SmallVector<std::pair<unsigned, SmallVector<uint64_t>>> sectionHashes;
sectionHashes.reserve(sectionIdxs.size());
SmallVector<uint64_t> hashes;
for (unsigned sectionIdx : sectionIdxs) {
const auto *isec = sections[sectionIdx];
isec->getSectionHashes(hashes, sectionToIdx);
sectionHashes.emplace_back(sectionIdx, std::move(hashes));
hashes.clear();
}
DenseMap<uint64_t, unsigned> hashFrequency;
for (auto &[sectionIdx, hashes] : sectionHashes)
for (auto hash : hashes)
++hashFrequency[hash];
if (duplicateSectionIdxs) {
// Merge sections that are nearly identical
SmallVector<std::pair<unsigned, SmallVector<uint64_t>>> newSectionHashes;
DenseMap<uint64_t, unsigned> wholeHashToSectionIdx;
for (auto &[sectionIdx, hashes] : sectionHashes) {
uint64_t wholeHash = 0;
for (auto hash : hashes)
if (hashFrequency[hash] > 5)
wholeHash ^= hash;
auto [it, wasInserted] =
wholeHashToSectionIdx.insert(std::make_pair(wholeHash, sectionIdx));
if (wasInserted) {
newSectionHashes.emplace_back(sectionIdx, hashes);
} else {
(*duplicateSectionIdxs)[it->getSecond()].push_back(sectionIdx);
}
}
sectionHashes = newSectionHashes;
// Recompute hash frequencies
hashFrequency.clear();
for (auto &[sectionIdx, hashes] : sectionHashes)
for (auto hash : hashes)
++hashFrequency[hash];
}
// Filter rare and common hashes and assign each a unique utility node that
// doesn't conflict with the trace utility nodes
DenseMap<uint64_t, BPFunctionNode::UtilityNodeT> hashToUN;
for (auto &[hash, frequency] : hashFrequency) {
if (frequency <= 1 || frequency * 2 > sectionHashes.size())
continue;
hashToUN[hash] = ++maxUN;
}
SmallVector<std::pair<unsigned, UtilityNodes>> sectionUns;
for (auto &[sectionIdx, hashes] : sectionHashes) {
UtilityNodes uns;
for (auto &hash : hashes) {
auto it = hashToUN.find(hash);
if (it != hashToUN.end())
uns.push_back(it->second);
}
sectionUns.emplace_back(sectionIdx, uns);
}
return sectionUns;
}
llvm::DenseMap<const BPSectionBase *, size_t>
BPSectionBase::reorderSectionsByBalancedPartitioning(
size_t &highestAvailablePriority, llvm::StringRef profilePath,
bool forFunctionCompression, bool forDataCompression,
bool compressionSortStartupFunctions, bool verbose,
SmallVector<std::unique_ptr<BPSectionBase>> &inputSections) {
TimeTraceScope timeScope("Setup Balanced Partitioning");
SmallVector<const BPSectionBase *> sections;
DenseMap<const void *, uint64_t> sectionToIdx;
StringMap<DenseSet<unsigned>> symbolToSectionIdxs;
// Process input sections
for (const auto &isec : inputSections) {
if (!isec->hasValidData())
continue;
unsigned sectionIdx = sections.size();
sectionToIdx.try_emplace(isec->getSection(), sectionIdx);
sections.emplace_back(isec.get());
for (auto &sym : isec->getSymbols())
symbolToSectionIdxs[sym->getName()].insert(sectionIdx);
}
StringMap<DenseSet<unsigned>> rootSymbolToSectionIdxs;
for (auto &entry : symbolToSectionIdxs) {
StringRef name = entry.getKey();
auto §ionIdxs = entry.getValue();
name = BPSectionBase::getRootSymbol(name);
rootSymbolToSectionIdxs[name].insert(sectionIdxs.begin(),
sectionIdxs.end());
if (auto resolvedLinkageName =
sections[*sectionIdxs.begin()]->getResolvedLinkageName(name))
rootSymbolToSectionIdxs[resolvedLinkageName.value()].insert(
sectionIdxs.begin(), sectionIdxs.end());
}
BPFunctionNode::UtilityNodeT maxUN = 0;
DenseMap<unsigned, UtilityNodes> startupSectionIdxUNs;
// Used to define the initial order for startup functions.
DenseMap<unsigned, size_t> sectionIdxToTimestamp;
std::unique_ptr<InstrProfReader> reader;
if (!profilePath.empty()) {
auto fs = vfs::getRealFileSystem();
auto readerOrErr = InstrProfReader::create(profilePath, *fs);
lld::checkError(readerOrErr.takeError());
reader = std::move(readerOrErr.get());
for (auto &entry : *reader) {
// Read all entries
(void)entry;
}
auto &traces = reader->getTemporalProfTraces();
DenseMap<unsigned, BPFunctionNode::UtilityNodeT> sectionIdxToFirstUN;
for (size_t traceIdx = 0; traceIdx < traces.size(); traceIdx++) {
uint64_t currentSize = 0, cutoffSize = 1;
size_t cutoffTimestamp = 1;
auto &trace = traces[traceIdx].FunctionNameRefs;
for (size_t timestamp = 0; timestamp < trace.size(); timestamp++) {
auto [Filename, ParsedFuncName] = getParsedIRPGOName(
reader->getSymtab().getFuncOrVarName(trace[timestamp]));
ParsedFuncName = BPSectionBase::getRootSymbol(ParsedFuncName);
auto sectionIdxsIt = rootSymbolToSectionIdxs.find(ParsedFuncName);
if (sectionIdxsIt == rootSymbolToSectionIdxs.end())
continue;
auto §ionIdxs = sectionIdxsIt->getValue();
// If the same symbol is found in multiple sections, they might be
// identical, so we arbitrarily use the size from the first section.
currentSize += sections[*sectionIdxs.begin()]->getSize();
// Since BalancedPartitioning is sensitive to the initial order, we need
// to explicitly define it to be ordered by earliest timestamp.
for (unsigned sectionIdx : sectionIdxs) {
auto [it, wasInserted] =
sectionIdxToTimestamp.try_emplace(sectionIdx, timestamp);
if (!wasInserted)
it->getSecond() = std::min<size_t>(it->getSecond(), timestamp);
}
if (timestamp >= cutoffTimestamp || currentSize >= cutoffSize) {
++maxUN;
cutoffSize = 2 * currentSize;
cutoffTimestamp = 2 * cutoffTimestamp;
}
for (unsigned sectionIdx : sectionIdxs)
sectionIdxToFirstUN.try_emplace(sectionIdx, maxUN);
}
for (auto &[sectionIdx, firstUN] : sectionIdxToFirstUN)
for (auto un = firstUN; un <= maxUN; ++un)
startupSectionIdxUNs[sectionIdx].push_back(un);
++maxUN;
sectionIdxToFirstUN.clear();
}
}
SmallVector<unsigned> sectionIdxsForFunctionCompression,
sectionIdxsForDataCompression;
for (unsigned sectionIdx = 0; sectionIdx < sections.size(); sectionIdx++) {
if (startupSectionIdxUNs.count(sectionIdx))
continue;
const auto *isec = sections[sectionIdx];
if (isec->isCodeSection()) {
if (forFunctionCompression)
sectionIdxsForFunctionCompression.push_back(sectionIdx);
} else {
if (forDataCompression)
sectionIdxsForDataCompression.push_back(sectionIdx);
}
}
if (compressionSortStartupFunctions) {
SmallVector<unsigned> startupIdxs;
for (auto &[sectionIdx, uns] : startupSectionIdxUNs)
startupIdxs.push_back(sectionIdx);
auto unsForStartupFunctionCompression =
getUnsForCompression(sections, sectionToIdx, startupIdxs,
/*duplicateSectionIdxs=*/nullptr, maxUN);
for (auto &[sectionIdx, compressionUns] :
unsForStartupFunctionCompression) {
auto &uns = startupSectionIdxUNs[sectionIdx];
uns.append(compressionUns);
llvm::sort(uns);
uns.erase(std::unique(uns.begin(), uns.end()), uns.end());
}
}
// Map a section index (order directly) to a list of duplicate section indices
// (not ordered directly).
DenseMap<unsigned, SmallVector<unsigned>> duplicateSectionIdxs;
auto unsForFunctionCompression = getUnsForCompression(
sections, sectionToIdx, sectionIdxsForFunctionCompression,
&duplicateSectionIdxs, maxUN);
auto unsForDataCompression = getUnsForCompression(
sections, sectionToIdx, sectionIdxsForDataCompression,
&duplicateSectionIdxs, maxUN);
std::vector<BPFunctionNode> nodesForStartup, nodesForFunctionCompression,
nodesForDataCompression;
for (auto &[sectionIdx, uns] : startupSectionIdxUNs)
nodesForStartup.emplace_back(sectionIdx, uns);
for (auto &[sectionIdx, uns] : unsForFunctionCompression)
nodesForFunctionCompression.emplace_back(sectionIdx, uns);
for (auto &[sectionIdx, uns] : unsForDataCompression)
nodesForDataCompression.emplace_back(sectionIdx, uns);
// Use the first timestamp to define the initial order for startup nodes.
llvm::sort(nodesForStartup, [§ionIdxToTimestamp](auto &L, auto &R) {
return std::make_pair(sectionIdxToTimestamp[L.Id], L.Id) <
std::make_pair(sectionIdxToTimestamp[R.Id], R.Id);
});
// Sort compression nodes by their Id (which is the section index) because the
// input linker order tends to be not bad.
llvm::sort(nodesForFunctionCompression,
[](auto &L, auto &R) { return L.Id < R.Id; });
llvm::sort(nodesForDataCompression,
[](auto &L, auto &R) { return L.Id < R.Id; });
{
TimeTraceScope timeScope("Balanced Partitioning");
BalancedPartitioningConfig config;
BalancedPartitioning bp(config);
bp.run(nodesForStartup);
bp.run(nodesForFunctionCompression);
bp.run(nodesForDataCompression);
}
unsigned numStartupSections = 0;
unsigned numCodeCompressionSections = 0;
unsigned numDuplicateCodeSections = 0;
unsigned numDataCompressionSections = 0;
unsigned numDuplicateDataSections = 0;
SetVector<const BPSectionBase *> orderedSections;
// Order startup functions,
for (auto &node : nodesForStartup) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numStartupSections;
}
// then functions for compression,
for (auto &node : nodesForFunctionCompression) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numCodeCompressionSections;
auto It = duplicateSectionIdxs.find(node.Id);
if (It == duplicateSectionIdxs.end())
continue;
for (auto dupSecIdx : It->getSecond()) {
const auto *dupIsec = sections[dupSecIdx];
if (orderedSections.insert(dupIsec))
++numDuplicateCodeSections;
}
}
// then data for compression.
for (auto &node : nodesForDataCompression) {
const auto *isec = sections[node.Id];
if (orderedSections.insert(isec))
++numDataCompressionSections;
auto It = duplicateSectionIdxs.find(node.Id);
if (It == duplicateSectionIdxs.end())
continue;
for (auto dupSecIdx : It->getSecond()) {
const auto *dupIsec = sections[dupSecIdx];
if (orderedSections.insert(dupIsec))
++numDuplicateDataSections;
}
}
if (verbose) {
unsigned numTotalOrderedSections =
numStartupSections + numCodeCompressionSections +
numDuplicateCodeSections + numDataCompressionSections +
numDuplicateDataSections;
dbgs()
<< "Ordered " << numTotalOrderedSections
<< " sections using balanced partitioning:\n Functions for startup: "
<< numStartupSections
<< "\n Functions for compression: " << numCodeCompressionSections
<< "\n Duplicate functions: " << numDuplicateCodeSections
<< "\n Data for compression: " << numDataCompressionSections
<< "\n Duplicate data: " << numDuplicateDataSections << "\n";
if (!profilePath.empty()) {
// Evaluate this function order for startup
StringMap<std::pair<uint64_t, uint64_t>> symbolToPageNumbers;
const uint64_t pageSize = (1 << 14);
uint64_t currentAddress = 0;
for (const auto *isec : orderedSections) {
for (auto &sym : isec->getSymbols()) {
uint64_t startAddress = currentAddress + sym->getValue().value_or(0);
uint64_t endAddress = startAddress + sym->getSize().value_or(0);
uint64_t firstPage = startAddress / pageSize;
// I think the kernel might pull in a few pages when one it touched,
// so it might be more accurate to force lastPage to be aligned by
// 4?
uint64_t lastPage = endAddress / pageSize;
StringRef rootSymbol = sym->getName();
rootSymbol = BPSectionBase::getRootSymbol(rootSymbol);
symbolToPageNumbers.try_emplace(rootSymbol, firstPage, lastPage);
if (auto resolvedLinkageName =
isec->getResolvedLinkageName(rootSymbol))
symbolToPageNumbers.try_emplace(resolvedLinkageName.value(),
firstPage, lastPage);
}
currentAddress += isec->getSize();
}
// The area under the curve F where F(t) is the total number of page
// faults at step t.
unsigned area = 0;
for (auto &trace : reader->getTemporalProfTraces()) {
SmallSet<uint64_t, 0> touchedPages;
for (unsigned step = 0; step < trace.FunctionNameRefs.size(); step++) {
auto traceId = trace.FunctionNameRefs[step];
auto [Filename, ParsedFuncName] =
getParsedIRPGOName(reader->getSymtab().getFuncOrVarName(traceId));
ParsedFuncName = BPSectionBase::getRootSymbol(ParsedFuncName);
auto it = symbolToPageNumbers.find(ParsedFuncName);
if (it != symbolToPageNumbers.end()) {
auto &[firstPage, lastPage] = it->getValue();
for (uint64_t i = firstPage; i <= lastPage; i++)
touchedPages.insert(i);
}
area += touchedPages.size();
}
}
dbgs() << "Total area under the page fault curve: " << (float)area
<< "\n";
}
}
DenseMap<const BPSectionBase *, size_t> sectionPriorities;
for (const auto *isec : orderedSections)
sectionPriorities[isec] = --highestAvailablePriority;
return sectionPriorities;
}