forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbin.R
171 lines (139 loc) · 4.58 KB
/
bin.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
bins <- function(breaks, closed = c("right", "left"),
fuzz = 1e-08 * stats::median(diff(breaks))) {
stopifnot(is.numeric(breaks))
closed <- match.arg(closed)
breaks <- sort(breaks)
# Adapted base::hist - this protects from floating point rounding errors
if (closed == "right") {
fuzzes <- c(-fuzz, rep.int(fuzz, length(breaks) - 1))
} else {
fuzzes <- c(rep.int(-fuzz, length(breaks) - 1), fuzz)
}
structure(
list(
breaks = breaks,
fuzzy = breaks + fuzzes,
right_closed = closed == "right"
),
class = "ggplot2_bins"
)
}
is_bins <- function(x) inherits(x, "ggplot2_bins")
#' @export
print.ggplot2_bins <- function(x, ...) {
n <- length(x$breaks)
cat("<Bins>\n")
if (x$right_closed) {
left <- c("[", rep("(", n - 2))
right <- rep("]", n - 1)
} else {
left <- rep("[", n - 1)
right <- c(rep(")", n - 2), "]")
}
breaks <- format(x$breaks)
bins <- paste0("* ", left, breaks[-n], ",", breaks[-1], right)
cat(bins, sep = "\n")
cat("\n")
}
# Compute parameters -----------------------------------------------------------
bin_breaks <- function(breaks, closed = c("right", "left")) {
bins(breaks, closed)
}
bin_breaks_width <- function(x_range, width = NULL, center = NULL,
boundary = NULL, closed = c("right", "left")) {
stopifnot(length(x_range) == 2)
# if (length(x_range) == 0) {
# return(bin_params(numeric()))
# }
stopifnot(is.numeric(width), length(width) == 1)
if (width <= 0) {
stop("`binwidth` must be positive", call. = FALSE)
}
if (!is.null(boundary) && !is.null(center)) {
stop("Only one of 'boundary' and 'center' may be specified.")
} else if (is.null(boundary)) {
if (is.null(center)) {
# If neither edge nor center given, compute both using tile layer's
# algorithm. This puts min and max of data in outer half of their bins.
boundary <- width / 2
} else {
# If center given but not boundary, compute boundary.
boundary <- center - width / 2
}
}
# Find the left side of left-most bin: inputs could be Dates or POSIXct, so
# coerce to numeric first.
x_range <- as.numeric(x_range)
width <- as.numeric(width)
boundary <- as.numeric(boundary)
shift <- floor((x_range[1] - boundary) / width)
origin <- boundary + shift * width
# Small correction factor so that we don't get an extra bin when, for
# example, origin = 0, max(x) = 20, width = 10.
max_x <- x_range[2] + (1 - 1e-08) * width
breaks <- seq(origin, max_x, width)
bin_breaks(breaks, closed = closed)
}
bin_breaks_bins <- function(x_range, bins = 30, center = NULL,
boundary = NULL, closed = c("right", "left")) {
stopifnot(length(x_range) == 2)
bins <- as.integer(bins)
if (bins < 1) {
stop("Need at least one bin.", call. = FALSE)
} else if (bins == 1) {
width <- diff(x_range)
boundary <- x_range[1]
} else {
width <- (x_range[2] - x_range[1]) / (bins - 1)
}
bin_breaks_width(x_range, width, boundary = boundary, center = center,
closed = closed)
}
# Compute bins ------------------------------------------------------------
bin_vector <- function(x, bins, weight = NULL, pad = FALSE) {
stopifnot(is_bins(bins))
if (all(is.na(x))) {
return(bin_out(length(x), NA, NA, xmin = NA, xmax = NA))
}
if (is.null(weight)) {
weight <- rep(1, length(x))
} else {
weight[is.na(weight)] <- 0
}
bin_idx <- cut(x, bins$fuzzy, right = bins$right_closed,
include.lowest = TRUE)
bin_count <- as.numeric(tapply(weight, bin_idx, sum, na.rm = TRUE))
bin_count[is.na(bin_count)] <- 0
bin_x <- (bins$breaks[-length(bins$breaks)] + bins$breaks[-1]) / 2
bin_widths <- diff(bins$breaks)
# Pad row of 0s at start and end
if (pad) {
bin_count <- c(0, bin_count, 0)
width1 <- bin_widths[1]
widthn <- bin_widths[length(bin_widths)]
bin_widths <- c(width1, bin_widths, widthn)
bin_x <- c(bin_x[1] - width1, bin_x, bin_x[length(bin_x)] + widthn)
}
# Add row for missings
if (any(is.na(bins))) {
bin_count <- c(bin_count, sum(is.na(bins)))
bin_widths <- c(bin_widths, NA)
bin_x <- c(bin_x, NA)
}
bin_out(bin_count, bin_x, bin_widths)
}
bin_out <- function(count = integer(0), x = numeric(0), width = numeric(0),
xmin = x - width / 2, xmax = x + width / 2) {
density <- count / width / sum(abs(count))
data.frame(
count = count,
x = x,
xmin = xmin,
xmax = xmax,
width = width,
density = density,
ncount = count / max(abs(count)),
ndensity = density / max(abs(density)),
stringsAsFactors = FALSE
)
}