forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom-point.r
227 lines (209 loc) · 7.1 KB
/
geom-point.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#' Points
#'
#' The point geom is used to create scatterplots. The scatterplot is most
#' useful for displaying the relationship between two continuous variables.
#' It can be used to compare one continuous and one categorical variable, or
#' two categorical variables, but a variation like [geom_jitter()],
#' [geom_count()], or [geom_bin2d()] is usually more
#' appropriate. A _bubblechart_ is a scatterplot with a third variable
#' mapped to the size of points.
#'
#' @section Overplotting:
#' The biggest potential problem with a scatterplot is overplotting: whenever
#' you have more than a few points, points may be plotted on top of one
#' another. This can severely distort the visual appearance of the plot.
#' There is no one solution to this problem, but there are some techniques
#' that can help. You can add additional information with
#' [geom_smooth()], [geom_quantile()] or
#' [geom_density_2d()]. If you have few unique `x` values,
#' [geom_boxplot()] may also be useful.
#'
#' Alternatively, you can
#' summarise the number of points at each location and display that in some
#' way, using [geom_count()], [geom_hex()], or
#' [geom_density2d()].
#'
#' Another technique is to make the points transparent (e.g.
#' `geom_point(alpha = 0.05)`) or very small (e.g.
#' `geom_point(shape = ".")`).
#'
#' @eval rd_aesthetics("geom", "point")
#' @inheritParams layer
#' @param na.rm If `FALSE`, the default, missing values are removed with
#' a warning. If `TRUE`, missing values are silently removed.
#' @param ... Other arguments passed on to [layer()]. These are
#' often aesthetics, used to set an aesthetic to a fixed value, like
#' `colour = "red"` or `size = 3`. They may also be parameters
#' to the paired geom/stat.
#' @inheritParams layer
#' @export
#' @examples
#' p <- ggplot(mtcars, aes(wt, mpg))
#' p + geom_point()
#'
#' # Add aesthetic mappings
#' p + geom_point(aes(colour = factor(cyl)))
#' p + geom_point(aes(shape = factor(cyl)))
#' # A "bubblechart":
#' p + geom_point(aes(size = qsec))
#'
#' # Set aesthetics to fixed value
#' ggplot(mtcars, aes(wt, mpg)) + geom_point(colour = "red", size = 3)
#'
#' \donttest{
#' # Varying alpha is useful for large datasets
#' d <- ggplot(diamonds, aes(carat, price))
#' d + geom_point(alpha = 1/10)
#' d + geom_point(alpha = 1/20)
#' d + geom_point(alpha = 1/100)
#' }
#'
#' # For shapes that have a border (like 21), you can colour the inside and
#' # outside separately. Use the stroke aesthetic to modify the width of the
#' # border
#' ggplot(mtcars, aes(wt, mpg)) +
#' geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 5)
#'
#' \donttest{
#' # You can create interesting shapes by layering multiple points of
#' # different sizes
#' p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
#' p + geom_point(aes(colour = factor(cyl)), size = 4) +
#' geom_point(colour = "grey90", size = 1.5)
#' p + geom_point(colour = "black", size = 4.5) +
#' geom_point(colour = "pink", size = 4) +
#' geom_point(aes(shape = factor(cyl)))
#'
#' # geom_point warns when missing values have been dropped from the data set
#' # and not plotted, you can turn this off by setting na.rm = TRUE
#' mtcars2 <- transform(mtcars, mpg = ifelse(runif(32) < 0.2, NA, mpg))
#' ggplot(mtcars2, aes(wt, mpg)) + geom_point()
#' ggplot(mtcars2, aes(wt, mpg)) + geom_point(na.rm = TRUE)
#' }
geom_point <- function(mapping = NULL, data = NULL,
stat = "identity", position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomPoint,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
na.rm = na.rm,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
GeomPoint <- ggproto("GeomPoint", Geom,
required_aes = c("x", "y"),
non_missing_aes = c("size", "shape", "colour"),
default_aes = aes(
shape = 19, colour = "black", size = 1.5, fill = NA,
alpha = NA, stroke = 0.5
),
draw_panel = function(data, panel_params, coord, na.rm = FALSE) {
if (is.character(data$shape)) {
data$shape <- translate_shape_string(data$shape)
}
coords <- coord$transform(data, panel_params)
ggname("geom_point",
pointsGrob(
coords$x, coords$y,
pch = coords$shape,
gp = gpar(
col = alpha(coords$colour, coords$alpha),
fill = alpha(coords$fill, coords$alpha),
# Stroke is added around the outside of the point
fontsize = coords$size * .pt + coords$stroke * .stroke / 2,
lwd = coords$stroke * .stroke / 2
)
)
)
},
draw_key = draw_key_point
)
translate_shape_string <- function(shape_string) {
# strings of length 0 or 1 are interpreted as symbols by grid
if (nchar(shape_string[1]) <= 1) {
return(shape_string)
}
pch_table <- c(
"square open" = 0,
"circle open" = 1,
"triangle open" = 2,
"plus" = 3,
"cross" = 4,
"diamond open" = 5,
"triangle down open" = 6,
"square cross" = 7,
"asterisk" = 8,
"diamond plus" = 9,
"circle plus" = 10,
"star" = 11,
"square plus" = 12,
"circle cross" = 13,
"square triangle" = 14,
"triangle square" = 14,
"square" = 15,
"circle small" = 16,
"triangle" = 17,
"diamond" = 18,
"circle" = 19,
"bullet" = 20,
"circle filled" = 21,
"square filled" = 22,
"diamond filled" = 23,
"triangle filled" = 24,
"triangle down filled" = 25
)
shape_match <- charmatch(shape_string, names(pch_table))
invalid_strings <- is.na(shape_match)
nonunique_strings <- shape_match == 0
if (any(invalid_strings)) {
bad_string <- unique(shape_string[invalid_strings])
n_bad <- length(bad_string)
collapsed_names <- sprintf("\n* '%s'", bad_string[1:min(5, n_bad)])
more_problems <- if (n_bad > 5) {
sprintf("\n* ... and %d more problem%s", n_bad - 5, ifelse(n_bad > 6, "s", ""))
}
stop(
"Can't find shape name:",
collapsed_names,
more_problems,
call. = FALSE
)
}
if (any(nonunique_strings)) {
bad_string <- unique(shape_string[nonunique_strings])
n_bad <- length(bad_string)
n_matches <- vapply(
bad_string[1:min(5, n_bad)],
function(shape_string) sum(grepl(paste0("^", shape_string), names(pch_table))),
integer(1)
)
collapsed_names <- sprintf(
"\n* '%s' partially matches %d shape names",
bad_string[1:min(5, n_bad)], n_matches
)
more_problems <- if (n_bad > 5) {
sprintf("\n* ... and %d more problem%s", n_bad - 5, ifelse(n_bad > 6, "s", ""))
}
stop(
"Shape names must be unambiguous:",
collapsed_names,
more_problems,
call. = FALSE
)
}
unname(pch_table[shape_match])
}