forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom-smooth.r
145 lines (136 loc) · 4.84 KB
/
geom-smooth.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#' Smoothed conditional means
#'
#' Aids the eye in seeing patterns in the presence of overplotting.
#' `geom_smooth()` and `stat_smooth()` are effectively aliases: they
#' both use the same arguments. Use `stat_smooth()` if you want to
#' display the results with a non-standard geom.
#'
#' Calculation is performed by the (currently undocumented)
#' `predictdf()` generic and its methods. For most methods the standard
#' error bounds are computed using the [predict()] method -- the
#' exceptions are `loess()`, which uses a t-based approximation, and
#' `glm()`, where the normal confidence interval is constructed on the link
#' scale and then back-transformed to the response scale.
#'
#' @eval rd_aesthetics("geom", "smooth")
#' @inheritParams layer
#' @inheritParams geom_point
#' @param geom,stat Use to override the default connection between
#' `geom_smooth()` and `stat_smooth()`.
#' @seealso See individual modelling functions for more details:
#' [lm()] for linear smooths,
#' [glm()] for generalised linear smooths, and
#' [loess()] for local smooths.
#' @export
#' @examples
#' ggplot(mpg, aes(displ, hwy)) +
#' geom_point() +
#' geom_smooth()
#'
#' # Use span to control the "wiggliness" of the default loess smoother.
#' # The span is the fraction of points used to fit each local regression:
#' # small numbers make a wigglier curve, larger numbers make a smoother curve.
#' ggplot(mpg, aes(displ, hwy)) +
#' geom_point() +
#' geom_smooth(span = 0.3)
#'
#' # Instead of a loess smooth, you can use any other modelling function:
#' ggplot(mpg, aes(displ, hwy)) +
#' geom_point() +
#' geom_smooth(method = lm, se = FALSE)
#'
#' ggplot(mpg, aes(displ, hwy)) +
#' geom_point() +
#' geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE)
#'
#' # Smooths are automatically fit to each group (defined by categorical
#' # aesthetics or the group aesthetic) and for each facet.
#'
#' ggplot(mpg, aes(displ, hwy, colour = class)) +
#' geom_point() +
#' geom_smooth(se = FALSE, method = lm)
#' ggplot(mpg, aes(displ, hwy)) +
#' geom_point() +
#' geom_smooth(span = 0.8) +
#' facet_wrap(~drv)
#'
#' \donttest{
#' binomial_smooth <- function(...) {
#' geom_smooth(method = "glm", method.args = list(family = "binomial"), ...)
#' }
#' # To fit a logistic regression, you need to coerce the values to
#' # a numeric vector lying between 0 and 1.
#' ggplot(rpart::kyphosis, aes(Age, Kyphosis)) +
#' geom_jitter(height = 0.05) +
#' binomial_smooth()
#'
#' ggplot(rpart::kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
#' geom_jitter(height = 0.05) +
#' binomial_smooth()
#'
#' ggplot(rpart::kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
#' geom_jitter(height = 0.05) +
#' binomial_smooth(formula = y ~ splines::ns(x, 2))
#'
#' # But in this case, it's probably better to fit the model yourself
#' # so you can exercise more control and see whether or not it's a good model.
#' }
geom_smooth <- function(mapping = NULL, data = NULL,
stat = "smooth", position = "identity",
...,
method = "auto",
formula = y ~ x,
se = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
params <- list(
na.rm = na.rm,
se = se,
...
)
if (identical(stat, "smooth")) {
params$method <- method
params$formula <- formula
}
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomSmooth,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = params
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
GeomSmooth <- ggproto("GeomSmooth", Geom,
setup_data = function(data, params) {
GeomLine$setup_data(data, params)
},
# The `se` argument is set to false here to make sure drawing the
# geom and drawing the legend is in synch. If the geom is used by a
# stat that doesn't set the `se` argument then `se` will be missing
# and the legend key won't be drawn. With `se = FALSE` here the
# ribbon won't be drawn either in that case, keeping the overall
# behavior predictable and sensible. The user will realize that they
# need to set `se = TRUE` to obtain the ribbon and the legend key.
draw_group = function(data, panel_params, coord, se = FALSE) {
ribbon <- transform(data, colour = NA)
path <- transform(data, alpha = NA)
has_ribbon <- se && !is.null(data$ymax) && !is.null(data$ymin)
gList(
if (has_ribbon) GeomRibbon$draw_group(ribbon, panel_params, coord),
GeomLine$draw_panel(path, panel_params, coord)
)
},
draw_key = draw_key_smooth,
required_aes = c("x", "y"),
optional_aes = c("ymin", "ymax"),
default_aes = aes(colour = "#3366FF", fill = "grey60", size = 1,
linetype = 1, weight = 1, alpha = 0.4)
)