forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinalg.jl
555 lines (490 loc) · 21.4 KB
/
linalg.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import Base.LinAlg
n = 10
srand(1234321)
a = rand(n,n)
b = rand(n)
for elty in (Float32, Float64, Complex64, Complex128)
a = convert(Matrix{elty}, a)
asym = a' + a # symmetric indefinite
apd = a'*a # symmetric positive-definite
b = convert(Vector{elty}, b)
capd = factorize(apd) # (Automatic) upper Cholesky factor
r = capd[:U]
@test_approx_eq r'*r apd
@test_approx_eq b apd * (capd\b)
@test_approx_eq apd * inv(capd) eye(elty, n)
@test_approx_eq a*(capd\(a'*b)) b # least squares soln for square a
@test_approx_eq det(capd) det(apd)
@test_approx_eq logdet(capd) log(det(capd)) # logdet is less likely to overflow
l = cholfact(apd, :L)[:L] # lower Cholesky factor
@test_approx_eq l*l' apd
cpapd = cholpfact(apd) # pivoted Choleksy decomposition
@test rank(cpapd) == n
@test all(diff(diag(real(cpapd.UL))).<=0.) # diagonal should be non-increasing
@test_approx_eq b apd * (cpapd\b)
@test_approx_eq apd * inv(cpapd) eye(elty, n)
bc1 = factorize(asym) # (Automatic) Bunch-Kaufman factor of indefinite matrix
@test_approx_eq inv(bc1) * asym eye(elty, n)
@test_approx_eq asym * (bc1\b) b
bc2 = bkfact(apd) # Bunch-Kaufman factors of a pos-def matrix
@test_approx_eq inv(bc2) * apd eye(elty, n)
@test_approx_eq apd * (bc2\b) b
lua = factorize(a) # (Automatic) Square LU decomposition
l,u,p = lua[:L], lua[:U], lua[:p]
@test_approx_eq l*u a[p,:]
@test_approx_eq l[invperm(p),:]*u a
@test_approx_eq a * inv(lua) eye(elty, n)
@test_approx_eq a*(lua\b) b
lua = lufact(a[:,1:5]) # Thin LU
@test_approx_eq lua[:L]*lua[:U] lua[:P]*a[:,1:5]
lua = lufact(a[1:5,:]) # Fat LU
@test_approx_eq lua[:L]*lua[:U] lua[:P]*a[1:5,:]
qra = qrfact(a) # QR decomposition
q,r = qra[:Q], qra[:R]
@test_approx_eq q'*full(q, false) eye(elty, n)
@test_approx_eq q*full(q, false)' eye(elty, n)
@test_approx_eq q*r a
@test_approx_eq a*(qra\b) b
qrpa = factorize(a[1:5,:]) # (Automatic) Fat pivoted QR decomposition
q,r,p = qrpa[:Q], qrpa[:R], qrpa[:p]
@test_approx_eq q'*full(q, false) eye(elty, 5)
@test_approx_eq q*full(q, false)' eye(elty, 5)
@test_approx_eq q*r a[1:5,p]
@test_approx_eq q*r[:,invperm(p)] a[1:5,:]
@test_approx_eq a[1:5,:]*(qrpa\b[1:5]) b[1:5]
qrpa = factorize(a[:,1:5]) # (Automatic) Thin pivoted QR decomposition
q,r,p = qrpa[:Q], qrpa[:R], qrpa[:p]
@test_approx_eq q'*full(q, false) eye(elty, n)
@test_approx_eq q*full(q, false)' eye(elty, n)
@test_approx_eq q*r a[:,p]
@test_approx_eq q*r[:,invperm(p)] a[:,1:5]
d,v = eig(asym) # symmetric eigen-decomposition
@test_approx_eq asym*v[:,1] d[1]*v[:,1]
@test_approx_eq v*scale(d,v') asym
d,v = eig(a) # non-symmetric eigen decomposition
for i in 1:size(a,2) @test_approx_eq a*v[:,i] d[i]*v[:,i] end
# symmetric generalized eigenproblem
a610 = a[:,6:10]
f = eigfact(asym[1:5,1:5], a610'a610)
@test_approx_eq asym[1:5,1:5]*f[:vectors] scale(a610'a610*f[:vectors], f[:values])
@test_approx_eq f[:values] eigvals(asym[1:5,1:5], a610'a610)
@test_approx_eq prod(f[:values]) prod(eigvals(asym[1:5,1:5]/(a610'a610)))
# Non-symmetric generalized eigenproblem
f = eigfact(a[1:5,1:5], a[6:10,6:10])
@test_approx_eq a[1:5,1:5]*f[:vectors] scale(a[6:10,6:10]*f[:vectors], f[:values])
@test_approx_eq f[:values] eigvals(a[1:5,1:5], a[6:10,6:10])
@test_approx_eq prod(f[:values]) prod(eigvals(a[1:5,1:5]/a[6:10,6:10]))
f = schurfact(a) # Schur
@test_approx_eq f[:vectors]*f[:Schur]*f[:vectors]' a
@test_approx_eq sort(real(f[:values])) sort(real(d))
@test_approx_eq sort(imag(f[:values])) sort(imag(d))
@test istriu(f[:Schur]) || iseltype(a,Real)
f = schurfact(a[1:5,1:5], a[6:10,6:10]) # Generalized Schur
@test_approx_eq f[:Q]*f[:S]*f[:Z]' a[1:5,1:5]
@test_approx_eq f[:Q]*f[:T]*f[:Z]' a[6:10,6:10]
@test istriu(f[:S]) || iseltype(a,Real)
@test istriu(f[:T]) || iseltype(a,Real)
usv = svdfact(a) # singular value decomposition
@test_approx_eq usv[:U]*scale(usv[:S],usv[:Vt]) a
gsvd = svdfact(a,a[1:5,:]) # Generalized svd
@test_approx_eq gsvd[:U]*gsvd[:D1]*gsvd[:R]*gsvd[:Q]' a
@test_approx_eq gsvd[:V]*gsvd[:D2]*gsvd[:R]*gsvd[:Q]' a[1:5,:]
x = a \ b
@test_approx_eq a*x b
x = triu(a) \ b
@test_approx_eq triu(a)*x b
x = tril(a)\b
@test_approx_eq tril(a)*x b
# Test null
a15null = null(a[:,1:5]')
@test rank([a[:,1:5] a15null]) == 10
@test_approx_eq_eps norm(a[:,1:5]'a15null) zero(elty) n*eps(real(one(elty)))
@test_approx_eq_eps norm(a15null'a[:,1:5]) zero(elty) n*eps(real(one(elty)))
@test size(null(b), 2) == 0
# Test pinv
pinva15 = pinv(a[:,1:5])
@test_approx_eq a[:,1:5]*pinva15*a[:,1:5] a[:,1:5]
@test_approx_eq pinva15*a[:,1:5]*pinva15 pinva15
# Complex vector rhs
x = a\complex(b)
@test_approx_eq a*x complex(b)
# Test cond
@test_approx_eq_eps cond(a, 1) 4.837320054554436e+02 0.01
@test_approx_eq_eps cond(a, 2) 1.960057871514615e+02 0.01
@test_approx_eq_eps cond(a, Inf) 3.757017682707787e+02 0.01
@test_approx_eq_eps cond(a[:,1:5]) 10.233059337453463 0.01
# Matrix square root
asq = sqrtm(a)
@test_approx_eq asq*asq a
asymsq = sqrtm(asym)
@test_approx_eq asymsq*asymsq asym
end
## Least squares solutions
a = [ones(20) 1:20 1:20]
b = reshape(eye(8, 5), 20, 2)
for elty in (Float32, Float64, Complex64, Complex128)
a = convert(Matrix{elty}, a)
b = convert(Matrix{elty}, b)
x = a[:,1:2]\b[:,1] # Vector rhs
@test_approx_eq ((a[:,1:2]*x-b[:,1])'*(a[:,1:2]*x-b[:,1]))[1] convert(elty, 2.546616541353384)
x = a[:,1:2]\b # Matrix rhs
@test_approx_eq det((a[:,1:2]*x-b)'*(a[:,1:2]*x-b)) convert(elty, 4.437969924812031)
x = a\b # Rank deficient
@test_approx_eq det((a*x-b)'*(a*x-b)) convert(elty, 4.437969924812031)
# Underdetermined minimum norm
x = convert(Matrix{elty}, [1 0 0; 0 1 -1]) \ convert(Vector{elty}, [1,1])
@test_approx_eq x convert(Vector{elty}, [1, 0.5, -0.5])
# symmetric, positive definite
@test_approx_eq inv(convert(Matrix{elty}, [6. 2; 2 1])) convert(Matrix{elty}, [0.5 -1; -1 3])
# symmetric, indefinite
@test_approx_eq inv(convert(Matrix{elty}, [1. 2; 2 1])) convert(Matrix{elty}, [-1. 2; 2 -1]/3)
end
## Test Julia fallbacks to BLAS routines
# matrices with zero dimensions
@test ones(0,5)*ones(5,3) == zeros(0,3)
@test ones(3,5)*ones(5,0) == zeros(3,0)
@test ones(3,0)*ones(0,4) == zeros(3,4)
@test ones(0,5)*ones(5,0) == zeros(0,0)
@test ones(0,0)*ones(0,4) == zeros(0,4)
@test ones(3,0)*ones(0,0) == zeros(3,0)
@test ones(0,0)*ones(0,0) == zeros(0,0)
# 2x2
A = [1 2; 3 4]
B = [5 6; 7 8]
@test A*B == [19 22; 43 50]
@test At_mul_B(A, B) == [26 30; 38 44]
@test A_mul_Bt(A, B) == [17 23; 39 53]
@test At_mul_Bt(A, B) == [23 31; 34 46]
Ai = A+(0.5*im).*B
Bi = B+(2.5*im).*A[[2,1],[2,1]]
@test Ai*Bi == [-21+53.5im -4.25+51.5im; -12+95.5im 13.75+85.5im]
@test Ac_mul_B(Ai, Bi) == [68.5-12im 57.5-28im; 88-3im 76.5-25im]
@test A_mul_Bc(Ai, Bi) == [64.5+5.5im 43+31.5im; 104-18.5im 80.5+31.5im]
@test Ac_mul_Bc(Ai, Bi) == [-28.25-66im 9.75-58im; -26-89im 21-73im]
# 3x3
A = [1 2 3; 4 5 6; 7 8 9]-5
B = [1 0 5; 6 -10 3; 2 -4 -1]
@test A*B == [-26 38 -27; 1 -4 -6; 28 -46 15]
@test Ac_mul_B(A, B) == [-6 2 -25; 3 -12 -18; 12 -26 -11]
@test A_mul_Bc(A, B) == [-14 0 6; 4 -3 -3; 22 -6 -12]
@test Ac_mul_Bc(A, B) == [6 -8 -6; 12 -9 -9; 18 -10 -12]
Ai = A+(0.5*im).*B
Bi = B+(2.5*im).*A[[2,1,3],[2,3,1]]
@test Ai*Bi == [-44.75+13im 11.75-25im -38.25+30im; -47.75-16.5im -51.5+51.5im -56+6im; 16.75-4.5im -53.5+52im -15.5im]
@test Ac_mul_B(Ai, Bi) == [-21+2im -1.75+49im -51.25+19.5im; 25.5+56.5im -7-35.5im 22+35.5im; -3+12im -32.25+43im -34.75-2.5im]
@test A_mul_Bc(Ai, Bi) == [-20.25+15.5im -28.75-54.5im 22.25+68.5im; -12.25+13im -15.5+75im -23+27im; 18.25+im 1.5+94.5im -27-54.5im]
@test Ac_mul_Bc(Ai, Bi) == [1+2im 20.75+9im -44.75+42im; 19.5+17.5im -54-36.5im 51-14.5im; 13+7.5im 11.25+31.5im -43.25-14.5im]
# Generic integer matrix multiplication
A = [1 2 3; 4 5 6] - 3
B = [2 -2; 3 -5; -4 7]
@test A*B == [-7 9; -4 9]
@test At_mul_Bt(A, B) == [-6 -11 15; -6 -13 18; -6 -15 21]
A = ones(Int, 2, 100)
B = ones(Int, 100, 3)
@test A*B == [100 100 100; 100 100 100]
A = rand(1:20, 5, 5) - 10
B = rand(1:20, 5, 5) - 10
@test At_mul_B(A, B) == A'*B
@test A_mul_Bt(A, B) == A*B'
# Preallocated
C = Array(Int, size(A, 1), size(B, 2))
@test A_mul_B(C, A, B) == A*B
@test At_mul_B(C, A, B) == A'*B
@test A_mul_Bt(C, A, B) == A*B'
@test At_mul_Bt(C, A, B) == A'*B'
# matrix algebra with subarrays of floats (stride != 1)
A = reshape(float64(1:20),5,4)
Aref = A[1:2:end,1:2:end]
Asub = sub(A, 1:2:5, 1:2:4)
b = [1.2,-2.5]
@test (Aref*b) == (Asub*b)
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
@test A_mul_Bt(Asub, Asub) == A_mul_Bt(Aref, Aref)
Ai = A + im
Aref = Ai[1:2:end,1:2:end]
Asub = sub(Ai, 1:2:5, 1:2:4)
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
@test A_mul_Bc(Asub, Asub) == A_mul_Bc(Aref, Aref)
# syrk & herk
A = reshape(1:1503, 501, 3)-750.0
res = float64([135228751 9979252 -115270247; 9979252 10481254 10983256; -115270247 10983256 137236759])
@test At_mul_B(A, A) == res
@test A_mul_Bt(A',A') == res
cutoff = 501
A = reshape(1:6*cutoff,2*cutoff,3)-(6*cutoff)/2
Asub = sub(A, 1:2:2*cutoff, 1:3)
Aref = A[1:2:2*cutoff, 1:3]
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
Ai = A - im
Asub = sub(Ai, 1:2:2*cutoff, 1:3)
Aref = Ai[1:2:2*cutoff, 1:3]
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
# Matrix exponential
for elty in (Float32, Float64, Complex64, Complex128)
A1 = convert(Matrix{elty}, [4 2 0; 1 4 1; 1 1 4])
eA1 = convert(Matrix{elty}, [147.866622446369 127.781085523181 127.781085523182;
183.765138646367 183.765138646366 163.679601723179;
71.797032399996 91.8825693231832 111.968106246371]')
@test_approx_eq expm(A1) eA1
A2 = convert(Matrix{elty},
[29.87942128909879 0.7815750847907159 -2.289519314033932;
0.7815750847907159 25.72656945571064 8.680737820540137;
-2.289519314033932 8.680737820540137 34.39400925519054])
eA2 = convert(Matrix{elty},
[ 5496313853692458.0 -18231880972009236.0 -30475770808580460.0;
-18231880972009252.0 60605228702221920.0 101291842930249760.0;
-30475770808580480.0 101291842930249728.0 169294411240851968.0])
@test_approx_eq expm(A2) eA2
A3 = convert(Matrix{elty}, [-131 19 18;-390 56 54;-387 57 52])
eA3 = convert(Matrix{elty}, [-1.50964415879218 -5.6325707998812 -4.934938326092;
0.367879439109187 1.47151775849686 1.10363831732856;
0.135335281175235 0.406005843524598 0.541341126763207]')
@test_approx_eq expm(A3) eA3
# Hessenberg
@test_approx_eq hessfact(A1)[:H] convert(Matrix{elty},
[4.000000000000000 -1.414213562373094 -1.414213562373095
-1.414213562373095 4.999999999999996 -0.000000000000000
0 -0.000000000000002 3.000000000000000])
end
# Hermitian matrix exponential
A1 = randn(4,4) + im*randn(4,4)
A2 = A1 + A1'
@test_approx_eq expm(A2) expm(Hermitian(A2))
# matmul for types w/o sizeof (issue #1282)
A = Array(Complex{Int},10,10)
A[:] = complex(1,1)
A2 = A^2
@test A2[1,1] == 20im
# basic tridiagonal operations
n = 5
d = 1 + rand(n)
dl = -rand(n-1)
du = -rand(n-1)
v = randn(n)
B = randn(n,2)
# Woodbury
U = randn(n,2)
V = randn(2,n)
C = randn(2,2)
for elty in (Float32, Float64, Complex64, Complex128)
d = convert(Vector{elty}, d)
dl = convert(Vector{elty}, dl)
du = convert(Vector{elty}, du)
T = Tridiagonal(dl, d, du)
@test size(T, 1) == n
@test size(T) == (n, n)
F = diagm(d)
for i = 1:n-1
F[i,i+1] = du[i]
F[i+1,i] = dl[i]
end
@test full(T) == F
# elementary operations on tridiagonals
@test conj(T) == Tridiagonal(conj(dl), conj(d), conj(du))
@test transpose(T) == Tridiagonal(du, d, dl)
@test ctranspose(T) == Tridiagonal(conj(du), conj(d), conj(dl))
# test interconversion of Tridiagonal and SymTridiagonal
@test Tridiagonal(dl, d, dl) == SymTridiagonal(d, dl)
@test Tridiagonal(dl, d, du) + Tridiagonal(du, d, dl) == SymTridiagonal(2d, dl+du)
@test SymTridiagonal(d, dl) + Tridiagonal(du, d, du) == SymTridiagonal(2d, dl+du)
# tridiagonal linear algebra
v = convert(Vector{elty}, v)
@test_approx_eq T*v F*v
invFv = F\v
@test_approx_eq T\v invFv
@test_approx_eq Base.solve(T,v) invFv
B = convert(Matrix{elty}, B)
@test_approx_eq Base.solve(T, B) F\B
Tlu = factorize(T)
x = Tlu\v
@test_approx_eq x invFv
@test_approx_eq det(T) det(F)
# symmetric tridiagonal
Ts = SymTridiagonal(d, dl)
Fs = full(Ts)
invFsv = Fs\v
Tldlt = Base.ldltd(Ts)
x = Tldlt\v
@test_approx_eq x invFsv
# eigenvalues/eigenvectors of symmetric tridiagonal
if elty === Float32 || elty === Float64
DT, VT = eig(Ts)
D, Vecs = eig(Fs)
@test_approx_eq DT D
@test_approx_eq abs(VT'Vecs) eye(elty, n)
end
# Woodbury
U = convert(Matrix{elty}, U)
V = convert(Matrix{elty}, V)
C = convert(Matrix{elty}, C)
W = Woodbury(T, U, C, V)
F = full(W)
@test_approx_eq W*v F*v
@test_approx_eq W\v F\v
@test_approx_eq det(W) det(F)
# Diagonal
D = Diagonal(d)
DM = diagm(d)
@test_approx_eq D*v DM*v
@test_approx_eq D*U DM*U
@test_approx_eq D\v DM\v
@test_approx_eq D\U DM\U
@test_approx_eq det(D) det(DM)
# Test det(A::Matrix)
# In the long run, these tests should step through Strang's
# axiomatic definition of determinants.
# If all axioms are satisfied and all the composition rules work,
# all determinants will be correct except for floating point errors.
# The determinant of the identity matrix should always be 1.
for i = 1:10
A = eye(elty, i)
@test_approx_eq det(A) one(elty)
end
# The determinant of a Householder reflection matrix should always be -1.
for i = 1:10
A = eye(elty, 10)
A[i, i] = -one(elty)
@test_approx_eq det(A) -one(elty)
end
# The determinant of a rotation matrix should always be 1.
for theta = convert(Vector{elty}, pi ./ [1:4])
R = [cos(theta) -sin(theta);
sin(theta) cos(theta)]
@test_approx_eq convert(elty, det(R)) one(elty)
end
# issue 1490
@test_approx_eq_eps det(ones(elty, 3,3)) zero(elty) 3*eps(real(one(elty)))
end
# LAPACK tests
Ainit = randn(5,5)
for elty in (Float32, Float64, Complex64, Complex128)
# syevr!
A = convert(Array{elty, 2}, Ainit)
Asym = A'A
vals, Z = LinAlg.LAPACK.syevr!('V', copy(Asym))
@test_approx_eq Z*scale(vals, Z') Asym
@test all(vals .> 0.0)
@test_approx_eq LinAlg.LAPACK.syevr!('N','V','U',copy(Asym),0.0,1.0,4,5,-1.0)[1] vals[vals .< 1.0]
@test_approx_eq LinAlg.LAPACK.syevr!('N','I','U',copy(Asym),0.0,1.0,4,5,-1.0)[1] vals[4:5]
@test_approx_eq vals LinAlg.LAPACK.syev!('N','U',copy(Asym))
end
#Test equivalence of eigenvectors/singular vectors taking into account possible phase (sign) differences
function test_approx_eq_vecs(a, b)
n = size(a)[1]
@test n==size(b)[1]
elty = typeof(a[1])
@assert elty==typeof(b[1])
for i=1:n
ev1, ev2 = a[:,i], b[:,i]
deviation = min(abs(norm(ev1-ev2)),abs(norm(ev1+ev2)))
@test_approx_eq_eps deviation 0.0 n^2*eps(abs(convert(elty, 1.0)))
end
end
#LAPACK tests for symmetric tridiagonal matrices
n=5
Ainit = randn(n)
Binit = randn(n-1)
for elty in (Float32, Float64)
A = convert(Array{elty, 1}, Ainit)
B = convert(Array{elty, 1}, Binit)
zero, infinity = convert(elty, 0), convert(elty, Inf)
#This tests eigenvalue and eigenvector computations using stebz! and stein!
(w, iblock, isplit, info) = LinAlg.LAPACK.stebz!('V','B',-infinity,infinity,0,0,zero,A,B)
(evecs, ifail, info)=LinAlg.LAPACK.stein!(A,B,w)
@test info==0
@test all(ifail .== 0)
(e, v)=eig(SymTridiagonal(A,B))
@test_approx_eq e w
#Take into account possible phase (sign) difference in eigenvectors
for i=1:n
ev1 = v[:,i]
ev2 = evecs[:,i]
deviation = min(abs(norm(ev1-ev2)),abs(norm(ev1+ev2)))
@test_approx_eq_eps deviation 0.0 n*eps(abs(convert(elty, 2.0)))
end
#Test stein! call using iblock and isplit
(w, iblock, isplit, info) = LinAlg.LAPACK.stebz!('V','B',-infinity,infinity,0,0,zero,A,B)
@test info==0
(evecs, ifail, info)=LinAlg.LAPACK.stein!(A, B, w, iblock, isplit)
@test info==0
@test all(ifail .== 0)
test_approx_eq_vecs(v, evecs)
end
#Test bidiagonal matrices and their SVDs
dv = randn(n)
ev = randn(n-1)
for elty in (Float32, Float64, Complex64, Complex128)
if (elty == Complex64)
dv += im*randn(n)
ev += im*randn(n-1)
end
for isupper in (true, false) #Test upper and lower bidiagonal matrices
T = Bidiagonal{elty}(dv, ev, isupper)
@test size(T, 1) == n
@test size(T) == (n, n)
@test full(T) == diagm(dv) + diagm(ev, isupper?1:-1)
@test Bidiagonal(full(T), isupper) == T
z = zeros(elty, n)
# idempotent tests
@test conj(conj(T)) == T
@test transpose(transpose(T)) == T
@test ctranspose(ctranspose(T)) == T
if (elty <: Real)
#XXX If I run either of these tests separately, by themselves, things are OK.
# Enabling BOTH tests results in segfault.
# Where is the memory corruption???
@test_approx_eq svdvals(full(T)) svdvals(T)
u1, d1, v1 = svd(full(T))
u2, d2, v2 = svd(T)
@test_approx_eq d1 d2
test_approx_eq_vecs(u1, u2)
test_approx_eq_vecs(v1, v2)
end
end
end
# Test gglse
for elty in (Float32, Float64, Complex64, Complex128)
A = convert(Array{elty, 2}, [1 1 1 1; 1 3 1 1; 1 -1 3 1; 1 1 1 3; 1 1 1 -1])
c = convert(Array{elty, 1}, [2, 1, 6, 3, 1])
B = convert(Array{elty, 2}, [1 1 1 -1; 1 -1 1 1; 1 1 -1 1])
d = convert(Array{elty, 1}, [1, 3, -1])
@test_approx_eq LinAlg.LAPACK.gglse!(A, c, B, d)[1] convert(Array{elty}, [0.5, -0.5, 1.5, 0.5])
end
## Issue related tests
# issue 1447
let
A = [1.+0.im 0; 0 1]
B = pinv(A)
for i = 1:4
@test_approx_eq A[i] B[i]
end
end
# issue 2246
let
A = [1 2 0 0; 0 1 0 0; 0 0 0 0; 0 0 0 0]
Asq = sqrtm(A)
@test_approx_eq Asq*Asq A
A2 = sub(A, 1:2, 1:2)
A2sq = sqrtm(A2)
@test_approx_eq A2sq*A2sq A2
end
let
N = 3
@test_approx_eq log(det(eye(N))) logdet(eye(N))
end
# issue 2637
let
a = [1, 2, 3]
b = [4, 5, 6]
@test kron(eye(2),eye(2)) == eye(4)
@test kron(a,b) == [4,5,6,8,10,12,12,15,18]
@test kron(a',b') == [4 5 6 8 10 12 12 15 18]
@test kron(a,b') == [4 5 6; 8 10 12; 12 15 18]
@test kron(a',b) == [4 8 12; 5 10 15; 6 12 18]
@test kron(a,eye(2)) == [1 0; 0 1; 2 0; 0 2; 3 0; 0 3]
@test kron(eye(2),a) == [ 1 0; 2 0; 3 0; 0 1; 0 2; 0 3]
@test kron(eye(2),2) == 2*eye(2)
@test kron(3,eye(3)) == 3*eye(3)
@test kron(a,2) == [2, 4, 6]
@test kron(b',2) == [8 10 12]
end