forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsorting.jl
162 lines (138 loc) · 4.33 KB
/
sorting.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
@test sort([2,3,1]) == [1,2,3]
@test sort([2,3,1], rev=true) == [3,2,1]
@test sortperm([2,3,1]) == [3,1,2]
@test !issorted([2,3,1])
@test issorted([1,2,3])
@test reverse([2,3,1]) == [1,3,2]
@test select([3,6,30,1,9],3) == 6
@test select([3,6,30,1,9],3:4) == [6,9]
@test sum(randperm(6)) == 21
@test nthperm([0,1,2],3) == [1,0,2]
@test searchsorted([1, 1, 2, 2, 3, 3], 0) == 1:0
@test searchsorted([1, 1, 2, 2, 3, 3], 1) == 1:2
@test searchsorted([1, 1, 2, 2, 3, 3], 2) == 3:4
@test searchsorted([1, 1, 2, 2, 3, 3], 4) == 7:6
@test searchsorted([1.0, 1, 2, 2, 3, 3], 2.5) == 5:4
for (rg,I) in {(49:57,47:59), (1:2:17,-1:19), (-3:0.5:2,-5:.5:4), (3+0*(1:5),-5:.5:4)}
rg_r = reverse(rg)
rgv, rgv_r = [rg], [rg_r]
for i = I
@test searchsorted(rg,i) == searchsorted(rgv,i)
@test searchsorted(rg_r,i,rev=true) == searchsorted(rgv_r,i,rev=true)
end
end
rg = 0.0:0.01:1.0
for i = 2:101
@test searchsorted(rg, rg[i]) == i:i
@test searchsorted(rg, prevfloat(rg[i])) == i:i-1
@test searchsorted(rg, nextfloat(rg[i])) == i+1:i
end
rg_r = reverse(rg)
for i = 1:100
@test searchsorted(rg_r, rg_r[i], rev=true) == i:i
@test searchsorted(rg_r, prevfloat(rg_r[i]), rev=true) == i+1:i
@test searchsorted(rg_r, nextfloat(rg_r[i]), rev=true) == i:i-1
end
a = rand(1:10000, 1000)
for alg in [InsertionSort, MergeSort, TimSort, HeapSort, RadixSort]
b = sort(a, alg=alg)
@test issorted(b)
ix = sortperm(a, alg=alg)
b = a[ix]
@test issorted(b)
@test a[ix] == b
b = sort(a, alg=alg, rev=true)
@test issorted(b, rev=true)
ix = sortperm(a, alg=alg, rev=true)
b = a[ix]
@test issorted(b, rev=true)
@test a[ix] == b
b = sort(a, alg=alg, by=x->1/x)
@test issorted(b, by=x->1/x)
ix = sortperm(a, alg=alg, by=x->1/x)
b = a[ix]
@test issorted(b, by=x->1/x)
@test a[ix] == b
c = copy(a)
permute!(c, ix)
@test c == b
ipermute!(c, ix)
@test c == a
if alg != RadixSort # RadixSort does not work with Lt orderings
c = sort(a, alg=alg, lt=(>))
@test b == c
end
c = sort(a, alg=alg, by=x->1/x)
@test b == c
end
b = sort(a, alg=QuickSort)
@test issorted(b)
b = sort(a, alg=QuickSort, rev=true)
@test issorted(b, rev=true)
b = sort(a, alg=QuickSort, by=x->1/x)
@test issorted(b, by=x->1/x)
@test select([3,6,30,1,9], 2, rev=true) == 9
@test select([3,6,30,1,9], 2, by=x->1/x) == 9
## more advanced sorting tests ##
randnans(n) = reinterpret(Float64,[rand(Uint64)|0x7ff8000000000000 for i=1:n])
function randn_with_nans(n,p)
v = randn(n)
x = find(rand(n).<p)
v[x] = randnans(length(x))
return v
end
srand(0xdeadbeef)
for n in [0:10, 100, 101, 1000, 1001]
r = 1:10
v = rand(1:10,n)
h = hist(v,r)
for ord in [Base.Order.Forward, Base.Order.Reverse]
# insertion sort (stable) as reference
pi = sortperm(v, alg=InsertionSort, order=ord)
@test isperm(pi)
si = v[pi]
@test hist(si,r) == h
@test issorted(si, order=ord)
@test all(issorted,[pi[si.==x] for x in r])
c = copy(v)
permute!(c, pi)
@test c == si
ipermute!(c, pi)
@test c == v
# stable algorithms
for alg in [MergeSort, TimSort, RadixSort]
p = sortperm(v, alg=alg, order=ord)
@test p == pi
s = copy(v)
permute!(s, p)
@test s == si
ipermute!(s, p)
@test s == v
end
# unstable algorithms
for alg in [QuickSort, HeapSort]
p = sortperm(v, alg=alg, order=ord)
@test isperm(p)
@test v[p] == si
s = copy(v)
permute!(s, p)
@test s == si
ipermute!(s, p)
@test s == v
end
end
v = randn_with_nans(n,0.1)
for ord in [Base.Order.Forward, Base.Order.Reverse],
alg in [InsertionSort, QuickSort, MergeSort, TimSort, HeapSort, RadixSort]
# test float sorting with NaNs
s = sort(v, alg=alg, order=ord)
@test issorted(s, order=ord)
@test reinterpret(Uint64,v[isnan(v)]) == reinterpret(Uint64,s[isnan(s)])
# test float permutation with NaNs
p = sortperm(v, alg=alg, order=ord)
@test isperm(p)
vp = v[p]
@test isequal(vp,s)
@test reinterpret(Uint64,vp) == reinterpret(Uint64,s)
end
end