forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlpt.c
2272 lines (2082 loc) · 58.6 KB
/
lpt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
*/
/*
* This file implements the LEB properties tree (LPT) area. The LPT area
* contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
* (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
* between the log and the orphan area.
*
* The LPT area is like a miniature self-contained file system. It is required
* that it never runs out of space, is fast to access and update, and scales
* logarithmically. The LEB properties tree is implemented as a wandering tree
* much like the TNC, and the LPT area has its own garbage collection.
*
* The LPT has two slightly different forms called the "small model" and the
* "big model". The small model is used when the entire LEB properties table
* can be written into a single eraseblock. In that case, garbage collection
* consists of just writing the whole table, which therefore makes all other
* eraseblocks reusable. In the case of the big model, dirty eraseblocks are
* selected for garbage collection, which consists of marking the clean nodes in
* that LEB as dirty, and then only the dirty nodes are written out. Also, in
* the case of the big model, a table of LEB numbers is saved so that the entire
* LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
* mounted.
*/
#include "ubifs.h"
#include <linux/crc16.h>
#include <linux/math64.h>
/**
* do_calc_lpt_geom - calculate sizes for the LPT area.
* @c: the UBIFS file-system description object
*
* Calculate the sizes of LPT bit fields, nodes, and tree, based on the
* properties of the flash and whether LPT is "big" (c->big_lpt).
*/
static void do_calc_lpt_geom(struct ubifs_info *c)
{
int i, n, bits, per_leb_wastage, max_pnode_cnt;
long long sz, tot_wastage;
n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
c->lpt_hght = 1;
n = UBIFS_LPT_FANOUT;
while (n < max_pnode_cnt) {
c->lpt_hght += 1;
n <<= UBIFS_LPT_FANOUT_SHIFT;
}
c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
c->nnode_cnt = n;
for (i = 1; i < c->lpt_hght; i++) {
n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
c->nnode_cnt += n;
}
c->space_bits = fls(c->leb_size) - 3;
c->lpt_lnum_bits = fls(c->lpt_lebs);
c->lpt_offs_bits = fls(c->leb_size - 1);
c->lpt_spc_bits = fls(c->leb_size);
n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
c->pcnt_bits = fls(n - 1);
c->lnum_bits = fls(c->max_leb_cnt - 1);
bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
(c->big_lpt ? c->pcnt_bits : 0) +
(c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
c->pnode_sz = (bits + 7) / 8;
bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
(c->big_lpt ? c->pcnt_bits : 0) +
(c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
c->nnode_sz = (bits + 7) / 8;
bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
c->lpt_lebs * c->lpt_spc_bits * 2;
c->ltab_sz = (bits + 7) / 8;
bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
c->lnum_bits * c->lsave_cnt;
c->lsave_sz = (bits + 7) / 8;
/* Calculate the minimum LPT size */
c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
c->lpt_sz += c->ltab_sz;
if (c->big_lpt)
c->lpt_sz += c->lsave_sz;
/* Add wastage */
sz = c->lpt_sz;
per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
sz += per_leb_wastage;
tot_wastage = per_leb_wastage;
while (sz > c->leb_size) {
sz += per_leb_wastage;
sz -= c->leb_size;
tot_wastage += per_leb_wastage;
}
tot_wastage += ALIGN(sz, c->min_io_size) - sz;
c->lpt_sz += tot_wastage;
}
/**
* ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
* @c: the UBIFS file-system description object
*
* This function returns %0 on success and a negative error code on failure.
*/
int ubifs_calc_lpt_geom(struct ubifs_info *c)
{
int lebs_needed;
long long sz;
do_calc_lpt_geom(c);
/* Verify that lpt_lebs is big enough */
sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
if (lebs_needed > c->lpt_lebs) {
ubifs_err("too few LPT LEBs");
return -EINVAL;
}
/* Verify that ltab fits in a single LEB (since ltab is a single node */
if (c->ltab_sz > c->leb_size) {
ubifs_err("LPT ltab too big");
return -EINVAL;
}
c->check_lpt_free = c->big_lpt;
return 0;
}
/**
* calc_dflt_lpt_geom - calculate default LPT geometry.
* @c: the UBIFS file-system description object
* @main_lebs: number of main area LEBs is passed and returned here
* @big_lpt: whether the LPT area is "big" is returned here
*
* The size of the LPT area depends on parameters that themselves are dependent
* on the size of the LPT area. This function, successively recalculates the LPT
* area geometry until the parameters and resultant geometry are consistent.
*
* This function returns %0 on success and a negative error code on failure.
*/
static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
int *big_lpt)
{
int i, lebs_needed;
long long sz;
/* Start by assuming the minimum number of LPT LEBs */
c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
c->main_lebs = *main_lebs - c->lpt_lebs;
if (c->main_lebs <= 0)
return -EINVAL;
/* And assume we will use the small LPT model */
c->big_lpt = 0;
/*
* Calculate the geometry based on assumptions above and then see if it
* makes sense
*/
do_calc_lpt_geom(c);
/* Small LPT model must have lpt_sz < leb_size */
if (c->lpt_sz > c->leb_size) {
/* Nope, so try again using big LPT model */
c->big_lpt = 1;
do_calc_lpt_geom(c);
}
/* Now check there are enough LPT LEBs */
for (i = 0; i < 64 ; i++) {
sz = c->lpt_sz * 4; /* Allow 4 times the size */
lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
if (lebs_needed > c->lpt_lebs) {
/* Not enough LPT LEBs so try again with more */
c->lpt_lebs = lebs_needed;
c->main_lebs = *main_lebs - c->lpt_lebs;
if (c->main_lebs <= 0)
return -EINVAL;
do_calc_lpt_geom(c);
continue;
}
if (c->ltab_sz > c->leb_size) {
ubifs_err("LPT ltab too big");
return -EINVAL;
}
*main_lebs = c->main_lebs;
*big_lpt = c->big_lpt;
return 0;
}
return -EINVAL;
}
/**
* pack_bits - pack bit fields end-to-end.
* @addr: address at which to pack (passed and next address returned)
* @pos: bit position at which to pack (passed and next position returned)
* @val: value to pack
* @nrbits: number of bits of value to pack (1-32)
*/
static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
{
uint8_t *p = *addr;
int b = *pos;
ubifs_assert(nrbits > 0);
ubifs_assert(nrbits <= 32);
ubifs_assert(*pos >= 0);
ubifs_assert(*pos < 8);
ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
if (b) {
*p |= ((uint8_t)val) << b;
nrbits += b;
if (nrbits > 8) {
*++p = (uint8_t)(val >>= (8 - b));
if (nrbits > 16) {
*++p = (uint8_t)(val >>= 8);
if (nrbits > 24) {
*++p = (uint8_t)(val >>= 8);
if (nrbits > 32)
*++p = (uint8_t)(val >>= 8);
}
}
}
} else {
*p = (uint8_t)val;
if (nrbits > 8) {
*++p = (uint8_t)(val >>= 8);
if (nrbits > 16) {
*++p = (uint8_t)(val >>= 8);
if (nrbits > 24)
*++p = (uint8_t)(val >>= 8);
}
}
}
b = nrbits & 7;
if (b == 0)
p++;
*addr = p;
*pos = b;
}
/**
* ubifs_unpack_bits - unpack bit fields.
* @addr: address at which to unpack (passed and next address returned)
* @pos: bit position at which to unpack (passed and next position returned)
* @nrbits: number of bits of value to unpack (1-32)
*
* This functions returns the value unpacked.
*/
uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
{
const int k = 32 - nrbits;
uint8_t *p = *addr;
int b = *pos;
uint32_t uninitialized_var(val);
const int bytes = (nrbits + b + 7) >> 3;
ubifs_assert(nrbits > 0);
ubifs_assert(nrbits <= 32);
ubifs_assert(*pos >= 0);
ubifs_assert(*pos < 8);
if (b) {
switch (bytes) {
case 2:
val = p[1];
break;
case 3:
val = p[1] | ((uint32_t)p[2] << 8);
break;
case 4:
val = p[1] | ((uint32_t)p[2] << 8) |
((uint32_t)p[3] << 16);
break;
case 5:
val = p[1] | ((uint32_t)p[2] << 8) |
((uint32_t)p[3] << 16) |
((uint32_t)p[4] << 24);
}
val <<= (8 - b);
val |= *p >> b;
nrbits += b;
} else {
switch (bytes) {
case 1:
val = p[0];
break;
case 2:
val = p[0] | ((uint32_t)p[1] << 8);
break;
case 3:
val = p[0] | ((uint32_t)p[1] << 8) |
((uint32_t)p[2] << 16);
break;
case 4:
val = p[0] | ((uint32_t)p[1] << 8) |
((uint32_t)p[2] << 16) |
((uint32_t)p[3] << 24);
break;
}
}
val <<= k;
val >>= k;
b = nrbits & 7;
p += nrbits >> 3;
*addr = p;
*pos = b;
ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
return val;
}
/**
* ubifs_pack_pnode - pack all the bit fields of a pnode.
* @c: UBIFS file-system description object
* @buf: buffer into which to pack
* @pnode: pnode to pack
*/
void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
struct ubifs_pnode *pnode)
{
uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
int i, pos = 0;
uint16_t crc;
pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
if (c->big_lpt)
pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
c->space_bits);
pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
c->space_bits);
if (pnode->lprops[i].flags & LPROPS_INDEX)
pack_bits(&addr, &pos, 1, 1);
else
pack_bits(&addr, &pos, 0, 1);
}
crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
c->pnode_sz - UBIFS_LPT_CRC_BYTES);
addr = buf;
pos = 0;
pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
}
/**
* ubifs_pack_nnode - pack all the bit fields of a nnode.
* @c: UBIFS file-system description object
* @buf: buffer into which to pack
* @nnode: nnode to pack
*/
void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
struct ubifs_nnode *nnode)
{
uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
int i, pos = 0;
uint16_t crc;
pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
if (c->big_lpt)
pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
int lnum = nnode->nbranch[i].lnum;
if (lnum == 0)
lnum = c->lpt_last + 1;
pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
pack_bits(&addr, &pos, nnode->nbranch[i].offs,
c->lpt_offs_bits);
}
crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
c->nnode_sz - UBIFS_LPT_CRC_BYTES);
addr = buf;
pos = 0;
pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
}
/**
* ubifs_pack_ltab - pack the LPT's own lprops table.
* @c: UBIFS file-system description object
* @buf: buffer into which to pack
* @ltab: LPT's own lprops table to pack
*/
void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
struct ubifs_lpt_lprops *ltab)
{
uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
int i, pos = 0;
uint16_t crc;
pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
for (i = 0; i < c->lpt_lebs; i++) {
pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
}
crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
c->ltab_sz - UBIFS_LPT_CRC_BYTES);
addr = buf;
pos = 0;
pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
}
/**
* ubifs_pack_lsave - pack the LPT's save table.
* @c: UBIFS file-system description object
* @buf: buffer into which to pack
* @lsave: LPT's save table to pack
*/
void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
{
uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
int i, pos = 0;
uint16_t crc;
pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
for (i = 0; i < c->lsave_cnt; i++)
pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
c->lsave_sz - UBIFS_LPT_CRC_BYTES);
addr = buf;
pos = 0;
pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
}
/**
* ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
* @c: UBIFS file-system description object
* @lnum: LEB number to which to add dirty space
* @dirty: amount of dirty space to add
*/
void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
{
if (!dirty || !lnum)
return;
dbg_lp("LEB %d add %d to %d",
lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
c->ltab[lnum - c->lpt_first].dirty += dirty;
}
/**
* set_ltab - set LPT LEB properties.
* @c: UBIFS file-system description object
* @lnum: LEB number
* @free: amount of free space
* @dirty: amount of dirty space
*/
static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
{
dbg_lp("LEB %d free %d dirty %d to %d %d",
lnum, c->ltab[lnum - c->lpt_first].free,
c->ltab[lnum - c->lpt_first].dirty, free, dirty);
ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
c->ltab[lnum - c->lpt_first].free = free;
c->ltab[lnum - c->lpt_first].dirty = dirty;
}
/**
* ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
* @c: UBIFS file-system description object
* @nnode: nnode for which to add dirt
*/
void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
{
struct ubifs_nnode *np = nnode->parent;
if (np)
ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
c->nnode_sz);
else {
ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
c->lpt_drty_flgs |= LTAB_DIRTY;
ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
}
}
}
/**
* add_pnode_dirt - add dirty space to LPT LEB properties.
* @c: UBIFS file-system description object
* @pnode: pnode for which to add dirt
*/
static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
{
ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
c->pnode_sz);
}
/**
* calc_nnode_num - calculate nnode number.
* @row: the row in the tree (root is zero)
* @col: the column in the row (leftmost is zero)
*
* The nnode number is a number that uniquely identifies a nnode and can be used
* easily to traverse the tree from the root to that nnode.
*
* This function calculates and returns the nnode number for the nnode at @row
* and @col.
*/
static int calc_nnode_num(int row, int col)
{
int num, bits;
num = 1;
while (row--) {
bits = (col & (UBIFS_LPT_FANOUT - 1));
col >>= UBIFS_LPT_FANOUT_SHIFT;
num <<= UBIFS_LPT_FANOUT_SHIFT;
num |= bits;
}
return num;
}
/**
* calc_nnode_num_from_parent - calculate nnode number.
* @c: UBIFS file-system description object
* @parent: parent nnode
* @iip: index in parent
*
* The nnode number is a number that uniquely identifies a nnode and can be used
* easily to traverse the tree from the root to that nnode.
*
* This function calculates and returns the nnode number based on the parent's
* nnode number and the index in parent.
*/
static int calc_nnode_num_from_parent(const struct ubifs_info *c,
struct ubifs_nnode *parent, int iip)
{
int num, shft;
if (!parent)
return 1;
shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
num = parent->num ^ (1 << shft);
num |= (UBIFS_LPT_FANOUT + iip) << shft;
return num;
}
/**
* calc_pnode_num_from_parent - calculate pnode number.
* @c: UBIFS file-system description object
* @parent: parent nnode
* @iip: index in parent
*
* The pnode number is a number that uniquely identifies a pnode and can be used
* easily to traverse the tree from the root to that pnode.
*
* This function calculates and returns the pnode number based on the parent's
* nnode number and the index in parent.
*/
static int calc_pnode_num_from_parent(const struct ubifs_info *c,
struct ubifs_nnode *parent, int iip)
{
int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
for (i = 0; i < n; i++) {
num <<= UBIFS_LPT_FANOUT_SHIFT;
num |= pnum & (UBIFS_LPT_FANOUT - 1);
pnum >>= UBIFS_LPT_FANOUT_SHIFT;
}
num <<= UBIFS_LPT_FANOUT_SHIFT;
num |= iip;
return num;
}
/**
* ubifs_create_dflt_lpt - create default LPT.
* @c: UBIFS file-system description object
* @main_lebs: number of main area LEBs is passed and returned here
* @lpt_first: LEB number of first LPT LEB
* @lpt_lebs: number of LEBs for LPT is passed and returned here
* @big_lpt: use big LPT model is passed and returned here
*
* This function returns %0 on success and a negative error code on failure.
*/
int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
int *lpt_lebs, int *big_lpt)
{
int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
int blnum, boffs, bsz, bcnt;
struct ubifs_pnode *pnode = NULL;
struct ubifs_nnode *nnode = NULL;
void *buf = NULL, *p;
struct ubifs_lpt_lprops *ltab = NULL;
int *lsave = NULL;
err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
if (err)
return err;
*lpt_lebs = c->lpt_lebs;
/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
c->lpt_first = lpt_first;
/* Needed by 'set_ltab()' */
c->lpt_last = lpt_first + c->lpt_lebs - 1;
/* Needed by 'ubifs_pack_lsave()' */
c->main_first = c->leb_cnt - *main_lebs;
lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
buf = vmalloc(c->leb_size);
ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
if (!pnode || !nnode || !buf || !ltab || !lsave) {
err = -ENOMEM;
goto out;
}
ubifs_assert(!c->ltab);
c->ltab = ltab; /* Needed by set_ltab */
/* Initialize LPT's own lprops */
for (i = 0; i < c->lpt_lebs; i++) {
ltab[i].free = c->leb_size;
ltab[i].dirty = 0;
ltab[i].tgc = 0;
ltab[i].cmt = 0;
}
lnum = lpt_first;
p = buf;
/* Number of leaf nodes (pnodes) */
cnt = c->pnode_cnt;
/*
* The first pnode contains the LEB properties for the LEBs that contain
* the root inode node and the root index node of the index tree.
*/
node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
iopos = ALIGN(node_sz, c->min_io_size);
pnode->lprops[0].free = c->leb_size - iopos;
pnode->lprops[0].dirty = iopos - node_sz;
pnode->lprops[0].flags = LPROPS_INDEX;
node_sz = UBIFS_INO_NODE_SZ;
iopos = ALIGN(node_sz, c->min_io_size);
pnode->lprops[1].free = c->leb_size - iopos;
pnode->lprops[1].dirty = iopos - node_sz;
for (i = 2; i < UBIFS_LPT_FANOUT; i++)
pnode->lprops[i].free = c->leb_size;
/* Add first pnode */
ubifs_pack_pnode(c, p, pnode);
p += c->pnode_sz;
len = c->pnode_sz;
pnode->num += 1;
/* Reset pnode values for remaining pnodes */
pnode->lprops[0].free = c->leb_size;
pnode->lprops[0].dirty = 0;
pnode->lprops[0].flags = 0;
pnode->lprops[1].free = c->leb_size;
pnode->lprops[1].dirty = 0;
/*
* To calculate the internal node branches, we keep information about
* the level below.
*/
blnum = lnum; /* LEB number of level below */
boffs = 0; /* Offset of level below */
bcnt = cnt; /* Number of nodes in level below */
bsz = c->pnode_sz; /* Size of nodes in level below */
/* Add all remaining pnodes */
for (i = 1; i < cnt; i++) {
if (len + c->pnode_sz > c->leb_size) {
alen = ALIGN(len, c->min_io_size);
set_ltab(c, lnum, c->leb_size - alen, alen - len);
memset(p, 0xff, alen - len);
err = ubi_leb_change(c->ubi, lnum++, buf, alen,
UBI_SHORTTERM);
if (err)
goto out;
p = buf;
len = 0;
}
ubifs_pack_pnode(c, p, pnode);
p += c->pnode_sz;
len += c->pnode_sz;
/*
* pnodes are simply numbered left to right starting at zero,
* which means the pnode number can be used easily to traverse
* down the tree to the corresponding pnode.
*/
pnode->num += 1;
}
row = 0;
for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
row += 1;
/* Add all nnodes, one level at a time */
while (1) {
/* Number of internal nodes (nnodes) at next level */
cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
for (i = 0; i < cnt; i++) {
if (len + c->nnode_sz > c->leb_size) {
alen = ALIGN(len, c->min_io_size);
set_ltab(c, lnum, c->leb_size - alen,
alen - len);
memset(p, 0xff, alen - len);
err = ubi_leb_change(c->ubi, lnum++, buf, alen,
UBI_SHORTTERM);
if (err)
goto out;
p = buf;
len = 0;
}
/* Only 1 nnode at this level, so it is the root */
if (cnt == 1) {
c->lpt_lnum = lnum;
c->lpt_offs = len;
}
/* Set branches to the level below */
for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
if (bcnt) {
if (boffs + bsz > c->leb_size) {
blnum += 1;
boffs = 0;
}
nnode->nbranch[j].lnum = blnum;
nnode->nbranch[j].offs = boffs;
boffs += bsz;
bcnt--;
} else {
nnode->nbranch[j].lnum = 0;
nnode->nbranch[j].offs = 0;
}
}
nnode->num = calc_nnode_num(row, i);
ubifs_pack_nnode(c, p, nnode);
p += c->nnode_sz;
len += c->nnode_sz;
}
/* Only 1 nnode at this level, so it is the root */
if (cnt == 1)
break;
/* Update the information about the level below */
bcnt = cnt;
bsz = c->nnode_sz;
row -= 1;
}
if (*big_lpt) {
/* Need to add LPT's save table */
if (len + c->lsave_sz > c->leb_size) {
alen = ALIGN(len, c->min_io_size);
set_ltab(c, lnum, c->leb_size - alen, alen - len);
memset(p, 0xff, alen - len);
err = ubi_leb_change(c->ubi, lnum++, buf, alen,
UBI_SHORTTERM);
if (err)
goto out;
p = buf;
len = 0;
}
c->lsave_lnum = lnum;
c->lsave_offs = len;
for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
lsave[i] = c->main_first + i;
for (; i < c->lsave_cnt; i++)
lsave[i] = c->main_first;
ubifs_pack_lsave(c, p, lsave);
p += c->lsave_sz;
len += c->lsave_sz;
}
/* Need to add LPT's own LEB properties table */
if (len + c->ltab_sz > c->leb_size) {
alen = ALIGN(len, c->min_io_size);
set_ltab(c, lnum, c->leb_size - alen, alen - len);
memset(p, 0xff, alen - len);
err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM);
if (err)
goto out;
p = buf;
len = 0;
}
c->ltab_lnum = lnum;
c->ltab_offs = len;
/* Update ltab before packing it */
len += c->ltab_sz;
alen = ALIGN(len, c->min_io_size);
set_ltab(c, lnum, c->leb_size - alen, alen - len);
ubifs_pack_ltab(c, p, ltab);
p += c->ltab_sz;
/* Write remaining buffer */
memset(p, 0xff, alen - len);
err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM);
if (err)
goto out;
c->nhead_lnum = lnum;
c->nhead_offs = ALIGN(len, c->min_io_size);
dbg_lp("space_bits %d", c->space_bits);
dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
dbg_lp("pcnt_bits %d", c->pcnt_bits);
dbg_lp("lnum_bits %d", c->lnum_bits);
dbg_lp("pnode_sz %d", c->pnode_sz);
dbg_lp("nnode_sz %d", c->nnode_sz);
dbg_lp("ltab_sz %d", c->ltab_sz);
dbg_lp("lsave_sz %d", c->lsave_sz);
dbg_lp("lsave_cnt %d", c->lsave_cnt);
dbg_lp("lpt_hght %d", c->lpt_hght);
dbg_lp("big_lpt %d", c->big_lpt);
dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
if (c->big_lpt)
dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
out:
c->ltab = NULL;
kfree(lsave);
vfree(ltab);
vfree(buf);
kfree(nnode);
kfree(pnode);
return err;
}
/**
* update_cats - add LEB properties of a pnode to LEB category lists and heaps.
* @c: UBIFS file-system description object
* @pnode: pnode
*
* When a pnode is loaded into memory, the LEB properties it contains are added,
* by this function, to the LEB category lists and heaps.
*/
static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
{
int i;
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
int lnum = pnode->lprops[i].lnum;
if (!lnum)
return;
ubifs_add_to_cat(c, &pnode->lprops[i], cat);
}
}
/**
* replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
* @c: UBIFS file-system description object
* @old_pnode: pnode copied
* @new_pnode: pnode copy
*
* During commit it is sometimes necessary to copy a pnode
* (see dirty_cow_pnode). When that happens, references in
* category lists and heaps must be replaced. This function does that.
*/
static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
struct ubifs_pnode *new_pnode)
{
int i;
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
if (!new_pnode->lprops[i].lnum)
return;
ubifs_replace_cat(c, &old_pnode->lprops[i],
&new_pnode->lprops[i]);
}
}
/**
* check_lpt_crc - check LPT node crc is correct.
* @c: UBIFS file-system description object
* @buf: buffer containing node
* @len: length of node
*
* This function returns %0 on success and a negative error code on failure.
*/
static int check_lpt_crc(void *buf, int len)
{
int pos = 0;
uint8_t *addr = buf;
uint16_t crc, calc_crc;
crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
len - UBIFS_LPT_CRC_BYTES);
if (crc != calc_crc) {
ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
calc_crc);
dbg_dump_stack();
return -EINVAL;
}
return 0;
}
/**
* check_lpt_type - check LPT node type is correct.
* @c: UBIFS file-system description object
* @addr: address of type bit field is passed and returned updated here
* @pos: position of type bit field is passed and returned updated here
* @type: expected type
*
* This function returns %0 on success and a negative error code on failure.
*/
static int check_lpt_type(uint8_t **addr, int *pos, int type)
{
int node_type;
node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
if (node_type != type) {
ubifs_err("invalid type (%d) in LPT node type %d", node_type,
type);
dbg_dump_stack();
return -EINVAL;
}
return 0;
}
/**
* unpack_pnode - unpack a pnode.
* @c: UBIFS file-system description object
* @buf: buffer containing packed pnode to unpack
* @pnode: pnode structure to fill
*
* This function returns %0 on success and a negative error code on failure.
*/
static int unpack_pnode(const struct ubifs_info *c, void *buf,
struct ubifs_pnode *pnode)
{
uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
int i, pos = 0, err;
err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
if (err)
return err;
if (c->big_lpt)
pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
struct ubifs_lprops * const lprops = &pnode->lprops[i];
lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
lprops->free <<= 3;
lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
lprops->dirty <<= 3;
if (ubifs_unpack_bits(&addr, &pos, 1))
lprops->flags = LPROPS_INDEX;
else
lprops->flags = 0;
lprops->flags |= ubifs_categorize_lprops(c, lprops);
}
err = check_lpt_crc(buf, c->pnode_sz);
return err;
}
/**
* ubifs_unpack_nnode - unpack a nnode.
* @c: UBIFS file-system description object
* @buf: buffer containing packed nnode to unpack
* @nnode: nnode structure to fill
*
* This function returns %0 on success and a negative error code on failure.