forked from ubc-vision/image-matching-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_match.py
134 lines (106 loc) · 4.01 KB
/
compute_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2020 Google LLC, University of Victoria, Czech Technical University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing
import os
import numpy as np
from joblib import Parallel, delayed
from tqdm import tqdm
from config import get_config, print_usage
from methods import feature_matching as matching
from utils.io_helper import load_h5, save_h5
from utils.path_helper import (get_data_path, get_desc_file, get_kp_file,
get_match_file, get_match_path,
get_match_cost_file, get_pairs_per_threshold)
import cv2
WITH_FAISS=False
try:
import faiss
WITH_FAISS = True
except:
pass
def compute_matches(descs1, descs2, cfg, kps1=None, kps2=None):
'''Computes matches given descriptors.
Parameters
----------
descs1, descs2: np.ndarray
Descriptors for the first and the second image.
cfg: Namespace
Configurations.
Returns
-------
matches
'''
if cfg.num_opencv_threads > 0:
cv2.setNumThreads(cfg.num_opencv_threads)
# Get matches through the matching module defined in the function argument
method_match = cfg.method_dict['config_{}_{}'.format(
cfg.dataset, cfg.task)]['matcher']['method']
matches, ellapsed = getattr(matching,
method_match).match(descs1, descs2, cfg, kps1,
kps2)
return matches, ellapsed
def main(cfg):
'''Main function to compute matches.
Parameters
----------
cfg: Namespace
Configurations for running this part of the code.
'''
if os.path.exists(get_match_file(cfg)):
print(' -- already exists, skipping match computation')
return
# Get data directory
data_dir = get_data_path(cfg)
# Load pre-computed pairs with the new visibility criteria
print('Reading list of all possible pairs')
pairs = get_pairs_per_threshold(data_dir)['0.0']
print('{} pre-computed pairs'.format(len(pairs)))
# Load descriptors
descriptors_dict = load_h5(get_desc_file(cfg))
keypoints_dict = load_h5(get_kp_file(cfg))
# Feature Matching
print('Computing matches')
num_cores = cfg.num_opencv_threads if cfg.num_opencv_threads > 0 else int(
len(os.sched_getaffinity(0)) * 0.75)
if WITH_FAISS:
num_cores = min(4, num_cores)
result = Parallel(n_jobs=num_cores)(
delayed(compute_matches)(np.asarray(descriptors_dict[pair.split(
'-')[0]]), np.asarray(descriptors_dict[pair.split(
'-')[1]]), cfg, np.asarray(keypoints_dict[pair.split(
'-')[0]]), np.asarray(keypoints_dict[pair.split('-')[1]]))
for pair in tqdm(pairs))
# Make match dictionary
matches_dict = {}
timings_list = []
for i, pair in enumerate(pairs):
matches_dict[pair] = result[i][0]
timings_list.append(result[i][1])
# Check match directory
if not os.path.exists(get_match_path(cfg)):
os.makedirs(get_match_path(cfg))
# Finally save packed matches
save_h5(matches_dict, get_match_file(cfg))
# Save computational cost
save_h5({'cost': np.mean(timings_list)}, get_match_cost_file(cfg))
print('Matching cost (averaged over image pairs): {:0.2f} sec'.format(
np.mean(timings_list)))
if __name__ == '__main__':
cfg, unparsed = get_config()
# If we have unparsed arguments, print usage and exit
if len(unparsed) > 0:
print(unparsed)
print_usage()
exit(1)
main(cfg)