forked from mmaus96/Lens_Modeling_Auto
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_to_csv_lens_old.py
executable file
·39 lines (25 loc) · 1.35 KB
/
save_to_csv_lens_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
import numpy as np
from lenstronomy.LightModel.light_param import LightParam
num = it + 1 #it is main image iteration, num is [it] shifted so it starts with 1 instead of 0
#################### Write to lens results csv ############################
data_list = [[data_pairs_dicts[it]['image_data'],data_pairs_dicts[it]['object_ID'],
data_pairs_dicts[it]['RA'],data_pairs_dicts[it]['DEC'],red_X_squared]]
for x in kwargs_result['kwargs_lens']:
data_list.append(list(x.values()))
data_flat = [item for sublist in data_list for item in sublist]
data_array = np.array([data_flat])
print('data array:', data_array)
cols = [['','','','',''],['FITS filename','ID','RA','DEC','reduced chi^2']]
for i in range(len(lens_model_list)):
cols[0].extend(np.array(['{}_lens'.format(lens_model_list[i])]*len(model_kwarg_names['kwargs_lens'][i])))
cols[1].extend(np.array(model_kwarg_names['kwargs_lens'][i]))
tuples = list(zip(*cols))
levels = pd.MultiIndex.from_tuples(tuples)
lens_df = pd.DataFrame(data_array,index= [['Image_{}'.format(num)]], columns=levels)
print('\n')
print('lens data frame: ', lens_df)
# if it == 0:
# lens_df.to_csv(csv_path + '/lens_results.csv') #creates the csv on after modeling first image
# else:
lens_df.to_csv(csv_path + '/lens_results.csv',mode='a',header = False) #add df to existing csv