forked from ellisk42/ec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrammar.py
1764 lines (1494 loc) · 75.9 KB
/
grammar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from frozendict import frozendict
from collections import defaultdict
from dreamcoder.frontier import *
from dreamcoder.program import *
from dreamcoder.type import *
from dreamcoder.utilities import *
import time
import itertools
class GrammarFailure(Exception):
pass
class SketchEnumerationFailure(Exception):
pass
class NoCandidates(Exception):
pass
class Grammar(object):
def __init__(self, logVariable, productions, continuationType=None):
self.logVariable = logVariable
self.productions = productions
self.continuationType = continuationType
self.expression2likelihood = dict((p, l) for l, _, p in productions)
self.expression2likelihood[Index(0)] = self.logVariable
def randomWeights(self, r):
"""returns a new grammar with random weights drawn from r. calls `r` w/ old weight"""
return Grammar(logVariable=r(self.logVariable),
productions=[(r(l),t,p)
for l,t,p in self.productions ],
continuationType=self.continuationType)
def strip_primitive_values(self):
return Grammar(logVariable=self.logVariable,
productions=[(l,t,strip_primitive_values(p))
for l,t,p in self.productions ],
continuationType=self.continuationType)
def unstrip_primitive_values(self):
return Grammar(logVariable=self.logVariable,
productions=[(l,t,unstrip_primitive_values(p))
for l,t,p in self.productions ],
continuationType=self.continuationType)
def __setstate__(self, state):
"""
Legacy support for loading grammar objects without the imperative type filled in
"""
assert 'logVariable' in state
assert 'productions' in state
if 'continuationType' in state:
continuationType = state['continuationType']
else:
if any( 'turtle' in str(t) for l,t,p in state['productions'] ):
continuationType = baseType("turtle")
elif any( 'tower' in str(t) for l,t,p in state['productions'] ):
continuationType = baseType("tower")
else:
continuationType = None
self.__init__(state['logVariable'], state['productions'], continuationType=continuationType)
@staticmethod
def fromProductions(productions, logVariable=0.0, continuationType=None):
"""Make a grammar from primitives and their relative logpriors."""
return Grammar(logVariable, [(l, p.infer(), p)
for l, p in productions],
continuationType=continuationType)
@staticmethod
def uniform(primitives, continuationType=None):
return Grammar(0.0, [(0.0, p.infer(), p) for p in primitives], continuationType=continuationType)
def __len__(self): return len(self.productions)
def __str__(self):
def productionKey(xxx_todo_changeme):
(l, t, p) = xxx_todo_changeme
return not isinstance(p, Primitive), l is not None and -l
if self.continuationType is not None:
lines = ["continuation : %s"%self.continuationType]
else:
lines = []
lines += ["%f\tt0\t$_" % self.logVariable]
for l, t, p in sorted(self.productions, key=productionKey):
if l is not None:
l = "%f\t%s\t%s" % (l, t, p)
else:
l = "-Inf\t%s\t%s" % (t, p)
if not t.isArrow() and isinstance(p, Invented):
try:
l += "\teval = %s" % (p.evaluate([]))
except BaseException:
pass
lines.append(l)
return "\n".join(lines)
def json(self):
j = {"logVariable": self.logVariable,
"productions": [{"expression": str(p), "logProbability": l}
for l, _, p in self.productions]}
if self.continuationType is not None:
j["continuationType"] = self.continuationType.json()
return j
def _immutable_code(self): return self.logVariable, tuple(self.productions)
def __eq__(self, o): return self._immutable_code() == o._immutable_code()
def __ne__(self, o): return not (self == o)
def __hash__(self): return hash(self._immutable_code())
@property
def primitives(self):
return [p for _, _, p in self.productions]
def removeProductions(self, ps):
return Grammar(
self.logVariable, [
(l, t, p) for (
l, t, p) in self.productions if p not in ps],
continuationType=self.continuationType)
def buildCandidates(self, request, context, environment,
# Should the log probabilities be normalized?
normalize=True,
# Should be returned a table mapping primitives to
# their candidate entry?
returnTable=False,
# Should we return probabilities vs log probabilities?
returnProbabilities=False,
# Must be a leaf (have no arguments)?
mustBeLeaf=False):
"""Primitives that are candidates for being used given a requested type
If returnTable is false (default): returns [((log)likelihood, tp, primitive, context)]
if returntable is true: returns {primitive: ((log)likelihood, tp, context)}"""
if returnProbabilities:
assert normalize
candidates = []
variableCandidates = []
for l, t, p in self.productions:
try:
newContext, t = t.instantiate(context)
newContext = newContext.unify(t.returns(), request)
t = t.apply(newContext)
if mustBeLeaf and t.isArrow():
continue
candidates.append((l, t, p, newContext))
except UnificationFailure:
continue
for j, t in enumerate(environment):
try:
newContext = context.unify(t.returns(), request)
t = t.apply(newContext)
if mustBeLeaf and t.isArrow():
continue
variableCandidates.append((t, Index(j), newContext))
except UnificationFailure:
continue
if self.continuationType == request:
terminalIndices = [v.i for t,v,k in variableCandidates if not t.isArrow()]
if terminalIndices:
smallestIndex = Index(min(terminalIndices))
variableCandidates = [(t,v,k) for t,v,k in variableCandidates
if t.isArrow() or v == smallestIndex]
candidates += [(self.logVariable - log(len(variableCandidates)), t, p, k)
for t, p, k in variableCandidates]
if candidates == []:
raise NoCandidates()
#eprint("candidates inside buildCandidates before norm:")
#eprint(candidates)
if normalize:
z = lse([l for l, t, p, k in candidates])
if returnProbabilities:
candidates = [(exp(l - z), t, p, k)
for l, t, p, k in candidates]
else:
candidates = [(l - z, t, p, k) for l, t, p, k in candidates]
#eprint("candidates inside buildCandidates after norm:")
#eprint(candidates)
if returnTable:
return {p: (l, t, k) for l, t, p, k in candidates}
else:
return candidates
def sample(self, request, maximumDepth=6, maxAttempts=None):
attempts = 0
while True:
try:
_, e = self._sample(
request, Context.EMPTY, [], maximumDepth=maximumDepth)
return e
except NoCandidates:
if maxAttempts is not None:
attempts += 1
if attempts > maxAttempts:
return None
continue
def _sample(self, request, context, environment, maximumDepth):
if request.isArrow():
context, expression = self._sample(
request.arguments[1], context, [
request.arguments[0]] + environment, maximumDepth)
return context, Abstraction(expression)
candidates = self.buildCandidates(request, context, environment,
normalize=True,
returnProbabilities=True,
# Force it to terminate in a
# leaf; a primitive with no
# function arguments
mustBeLeaf=maximumDepth <= 1)
#eprint("candidates:")
#eprint(candidates)
newType, chosenPrimitive, context = sampleDistribution(candidates)
# Sample the arguments
xs = newType.functionArguments()
returnValue = chosenPrimitive
for x in xs:
x = x.apply(context)
context, x = self._sample(x, context, environment, maximumDepth - 1)
returnValue = Application(returnValue, x)
return context, returnValue
def likelihoodSummary(self, context, environment, request, expression, silent=False):
if request.isArrow():
if not isinstance(expression, Abstraction):
if not silent:
eprint("Request is an arrow but I got", expression)
return context, None
return self.likelihoodSummary(context,
[request.arguments[0]] + environment,
request.arguments[1],
expression.body,
silent=silent)
# Build the candidates
candidates = self.buildCandidates(request, context, environment,
normalize=False,
returnTable=True)
# A list of everything that would have been possible to use here
possibles = [p for p in candidates.keys() if not p.isIndex]
numberOfVariables = sum(p.isIndex for p in candidates.keys())
if numberOfVariables > 0:
possibles += [Index(0)]
f, xs = expression.applicationParse()
if f not in candidates:
if self.continuationType is not None and f.isIndex:
ls = LikelihoodSummary()
ls.constant = NEGATIVEINFINITY
return ls
if not silent:
eprint(f, "Not in candidates")
eprint("Candidates is", candidates)
#eprint("grammar:", grammar.productions)
eprint("request is", request)
eprint("xs", xs)
eprint("environment", environment)
assert False
return context, None
thisSummary = LikelihoodSummary()
thisSummary.record(f, possibles,
constant= -math.log(numberOfVariables) if f.isIndex else 0)
_, tp, context = candidates[f]
argumentTypes = tp.functionArguments()
if len(xs) != len(argumentTypes):
eprint("PANIC: not enough arguments for the type")
eprint("request", request)
eprint("tp", tp)
eprint("expression", expression)
eprint("xs", xs)
eprint("argumentTypes", argumentTypes)
# This should absolutely never occur
raise GrammarFailure((context, environment, request, expression))
for argumentType, argument in zip(argumentTypes, xs):
argumentType = argumentType.apply(context)
context, newSummary = self.likelihoodSummary(
context, environment, argumentType, argument, silent=silent)
if newSummary is None:
return context, None
thisSummary.join(newSummary)
return context, thisSummary
def bestFirstEnumeration(self, request):
from heapq import heappush, heappop
pq = []
def choices(parentCost, xs):
for c, x in xs:
heappush(pq, (parentCost + c, x))
def g(parentCost, request, _=None,
context=None, environment=[],
k=None):
"""
k is a continuation.
k: Expects to be called with MDL, context, expression.
"""
assert k is not None
if context is None:
context = Context.EMPTY
if request.isArrow():
g(parentCost,
request.arguments[1],
context=context,
environment=[request.arguments[0]] + environment,
k=lambda MDL,
newContext,
p: k(MDL,
newContext,
Abstraction(p)))
else:
candidates = self.buildCandidates(request,
context,
environment,
normalize=True,
returnProbabilities=False,
returnTable=True)
choices(parentCost,
[(-f_ll_tp_newContext[1][0],
lambda: ga(parentCost - f_ll_tp_newContext[1][0],
f_ll_tp_newContext[0],
f_ll_tp_newContext[1][1].functionArguments(),
context=f_ll_tp_newContext[1][2],
environment=environment,
k=k)) for f_ll_tp_newContext in iter(candidates.items())])
def ga(costSoFar, f, argumentTypes, _=None,
context=None, environment=None,
k=None):
if argumentTypes == []:
k(costSoFar, context, f)
else:
t1 = argumentTypes[0].apply(context)
g(costSoFar, t1, context=context, environment=environment,
k=lambda newCost, newContext, argument:
ga(newCost, Application(f, argument), argumentTypes[1:],
context=newContext, environment=environment,
k=k))
def receiveResult(MDL, _, expression):
heappush(pq, (MDL, expression))
g(0., request, context=Context.EMPTY, environment=[], k=receiveResult)
frontier = []
while len(frontier) < 10**3:
MDL, action = heappop(pq)
if isinstance(action, Program):
expression = action
frontier.append(expression)
#eprint("Enumerated program",expression,-MDL,self.closedLogLikelihood(request, expression))
else:
action()
def closedLikelihoodSummary(self, request, expression, silent=False):
try:
context, summary = self.likelihoodSummary(Context.EMPTY, [], request, expression, silent=silent)
except GrammarFailure as e:
failureExport = 'failures/grammarFailure%s.pickle' % (
time.time() + getPID())
eprint("PANIC: Grammar failure, exporting to ", failureExport)
with open(failureExport, 'wb') as handle:
pickle.dump((e, self, request, expression), handle)
assert False
return summary
def logLikelihood(self, request, expression):
summary = self.closedLikelihoodSummary(request, expression)
if summary is None:
eprint(
"FATAL: program [ %s ] does not have a likelihood summary." %
expression, "r = ", request, "\n", self)
assert False
return summary.logLikelihood(self)
def rescoreFrontier(self, frontier):
return Frontier([FrontierEntry(e.program,
logPrior=self.logLikelihood(frontier.task.request, e.program),
logLikelihood=e.logLikelihood)
for e in frontier],
frontier.task)
def productionUses(self, frontiers):
"""Returns the expected number of times that each production was used. {production: expectedUses}"""
frontiers = [self.rescoreFrontier(f).normalize()
for f in frontiers if not f.empty]
uses = {p: 0. for p in self.primitives}
for f in frontiers:
for e in f:
summary = self.closedLikelihoodSummary(f.task.request,
e.program)
for p, u in summary.uses:
uses[p] += u * math.exp(e.logPosterior)
return uses
def insideOutside(self, frontiers, pseudoCounts, iterations=1):
# Replace programs with (likelihood summary, uses)
frontiers = [ Frontier([ FrontierEntry((summary, summary.toUses()),
logPrior=summary.logLikelihood(self),
logLikelihood=e.logLikelihood)
for e in f
for summary in [self.closedLikelihoodSummary(f.task.request, e.program)] ],
task=f.task)
for f in frontiers ]
g = self
for i in range(iterations):
u = Uses()
for f in frontiers:
f = f.normalize()
for e in f:
_, eu = e.program
u += math.exp(e.logPosterior) * eu
lv = math.log(u.actualVariables + pseudoCounts) - \
math.log(u.possibleVariables + pseudoCounts)
g = Grammar(lv,
[ (math.log(u.actualUses.get(p,0.) + pseudoCounts) - \
math.log(u.possibleUses.get(p,0.) + pseudoCounts),
t,p)
for _,t,p in g.productions ],
continuationType=self.continuationType)
if i < iterations - 1:
frontiers = [Frontier([ FrontierEntry((summary, uses),
logPrior=summary.logLikelihood(g),
logLikelihood=e.logLikelihood)
for e in f
for (summary, uses) in [e.program] ],
task=f.task)
for f in frontiers ]
return g
def frontierMDL(self, frontier):
return max( e.logLikelihood + self.logLikelihood(frontier.task.request, e.program)
for e in frontier )
def enumeration(self,context,environment,request,upperBound,
maximumDepth=20,
lowerBound=0.):
'''Enumerates all programs whose MDL satisfies: lowerBound <= MDL < upperBound'''
if upperBound < 0 or maximumDepth == 1:
return
if request.isArrow():
v = request.arguments[0]
for l, newContext, b in self.enumeration(context, [v] + environment,
request.arguments[1],
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth):
yield l, newContext, Abstraction(b)
else:
candidates = self.buildCandidates(request, context, environment,
normalize=True)
for l, t, p, newContext in candidates:
mdl = -l
if not (mdl < upperBound):
continue
xs = t.functionArguments()
for aL, aK, application in\
self.enumerateApplication(newContext, environment, p, xs,
upperBound=upperBound + l,
lowerBound=lowerBound + l,
maximumDepth=maximumDepth - 1):
yield aL + l, aK, application
def enumerateApplication(self, context, environment,
function, argumentRequests,
# Upper bound on the description length of all of
# the arguments
upperBound,
# Lower bound on the description length of all of
# the arguments
lowerBound=0.,
maximumDepth=20,
originalFunction=None,
argumentIndex=0):
if upperBound < 0. or maximumDepth == 1:
return
if originalFunction is None:
originalFunction = function
if argumentRequests == []:
if lowerBound <= 0. and 0. < upperBound:
yield 0., context, function
else:
return
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
for argL, newContext, arg in self.enumeration(context, environment, argRequest,
upperBound=upperBound,
lowerBound=0.,
maximumDepth=maximumDepth):
if violatesSymmetry(originalFunction, arg, argumentIndex):
continue
newFunction = Application(function, arg)
for resultL, resultK, result in self.enumerateApplication(newContext, environment, newFunction,
laterRequests,
upperBound=upperBound + argL,
lowerBound=lowerBound + argL,
maximumDepth=maximumDepth,
originalFunction=originalFunction,
argumentIndex=argumentIndex + 1):
yield resultL + argL, resultK, result
def sketchEnumeration(self,context,environment,request,sk,upperBound,
maximumDepth=20,
lowerBound=0.):
'''Enumerates all sketch instantiations whose MDL satisfies: lowerBound <= MDL < upperBound'''
if upperBound < 0. or maximumDepth == 1:
return
if sk.isHole:
yield from self.enumeration(context, environment, request, upperBound,
maximumDepth=maximumDepth,
lowerBound=lowerBound)
elif request.isArrow():
assert sk.isAbstraction
v = request.arguments[0]
for l, newContext, b in self.sketchEnumeration(context, [v] + environment,
request.arguments[1],
sk.body,
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth):
yield l, newContext, Abstraction(b)
else:
f, xs = sk.applicationParse()
if f.isIndex:
ft = environment[f.i].apply(context)
elif f.isInvented or f.isPrimitive:
context, ft = f.tp.instantiate(context)
elif f.isAbstraction:
assert False, "sketch is not in beta longform"
elif f.isHole:
assert False, "hole as function not yet supported"
elif f.isApplication:
assert False, "should never happen - bug in applicationParse"
else: assert False
try: context = context.unify(ft.returns(), request)
except UnificationFailure:
eprint("Exception: sketch is ill-typed")
return #so that we can continue evaluating
# raise SketchEnumerationFailure() #"sketch is ill-typed"
ft = ft.apply(context)
argumentRequests = ft.functionArguments()
assert len(argumentRequests) == len(xs)
yield from self.sketchApplication(context, environment,
f, xs, argumentRequests,
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth - 1)
def sketchApplication(self, context, environment,
function, arguments, argumentRequests,
# Upper bound on the description length of all of
# the arguments
upperBound,
# Lower bound on the description length of all of
# the arguments
lowerBound=0.,
maximumDepth=20):
if upperBound < 0. or maximumDepth == 1:
return
if argumentRequests == []:
if lowerBound <= 0. and 0. < upperBound:
yield 0., context, function
else:
return
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
firstSketch = arguments[0]
laterSketches = arguments[1:]
for argL, newContext, arg in self.sketchEnumeration(context, environment, argRequest,
firstSketch,
upperBound=upperBound,
lowerBound=0.,
maximumDepth=maximumDepth):
newFunction = Application(function, arg)
for resultL, resultK, result in self.sketchApplication(newContext, environment, newFunction,
laterSketches, laterRequests,
upperBound=upperBound + argL,
lowerBound=lowerBound + argL,
maximumDepth=maximumDepth):
yield resultL + argL, resultK, result
def sketchLogLikelihood(self, request, full, sk, context=Context.EMPTY, environment=[]):
"""
calculates mdl of full program 'full' from sketch 'sk'
"""
if sk.isHole:
_, summary = self.likelihoodSummary(context, environment, request, full)
if summary is None:
eprint(
"FATAL: program [ %s ] does not have a likelihood summary." %
full, "r = ", request, "\n", self)
assert False
return summary.logLikelihood(self), context
elif request.isArrow():
assert sk.isAbstraction and full.isAbstraction
#assert sk.f == full.f #is this right? or do i need to recurse?
v = request.arguments[0]
return self.sketchLogLikelihood(request.arguments[1], full.body, sk.body, context=context, environment=[v] + environment)
else:
sk_f, sk_xs = sk.applicationParse()
full_f, full_xs = full.applicationParse()
if sk_f.isIndex:
assert sk_f == full_f, "sketch and full program don't match on an index"
ft = environment[sk_f.i].apply(context)
elif sk_f.isInvented or sk_f.isPrimitive:
assert sk_f == full_f, "sketch and full program don't match on a primitive"
context, ft = sk_f.tp.instantiate(context)
elif sk_f.isAbstraction:
assert False, "sketch is not in beta longform"
elif sk_f.isHole:
assert False, "hole as function not yet supported"
elif sk_f.isApplication:
assert False, "should never happen - bug in applicationParse"
else: assert False
try: context = context.unify(ft.returns(), request)
except UnificationFailure: assert False, "sketch is ill-typed"
ft = ft.apply(context)
argumentRequests = ft.functionArguments()
assert len(argumentRequests) == len(sk_xs) == len(full_xs) #this might not be true if holes??
return self.sketchllApplication(context, environment,
sk_f, sk_xs, full_f, full_xs, argumentRequests)
def sketchllApplication(self, context, environment,
sk_function, sk_arguments, full_function, full_arguments, argumentRequests):
if argumentRequests == []:
return torch.tensor([0.]).cuda(), context #does this make sense?
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
sk_firstSketch = sk_arguments[0]
full_firstSketch = full_arguments[0]
sk_laterSketches = sk_arguments[1:]
full_laterSketches = full_arguments[1:]
argL, newContext = self.sketchLogLikelihood(argRequest, full_firstSketch, sk_firstSketch, context=context, environment=environment)
#finish this...
sk_newFunction = Application(sk_function, sk_firstSketch) # is this redundant? maybe
full_newFunction = Application(full_function, full_firstSketch)
resultL, context = self.sketchllApplication(newContext, environment, sk_newFunction, sk_laterSketches,
full_newFunction, full_laterSketches, laterRequests)
return resultL + argL, context
def enumerateNearby(self, request, expr, distance=3.0):
"""Enumerate programs with local mutations in subtrees with small description length"""
if distance <= 0:
yield expr
else:
def mutations(tp, loss):
for l, _, expr in self.enumeration(
Context.EMPTY, [], tp, distance - loss):
yield expr, l
yield from Mutator(self, mutations).execute(expr, request)
def enumerateHoles(self, request, expr, k=3, return_obj=Hole):
"""Enumerate programs with a single hole within mdl distance"""
#TODO: make it possible to enumerate sketches with multiple holes
def mutations(tp, loss, is_left_application=False):
"""
to allow applications lhs to become a hole,
remove the condition below and ignore all the is_left_application kwds
"""
if not is_left_application:
yield return_obj(), 0
top_k = []
for expr, l in Mutator(self, mutations).execute(expr, request):
if len(top_k) > 0:
i, v = min(enumerate(top_k), key=lambda x:x[1][1])
if l > v[1]:
if len(top_k) >= k:
top_k[i] = (expr, l)
else:
top_k.append((expr, l))
elif len(top_k) < k:
top_k.append((expr, l))
else:
top_k.append((expr, l))
return sorted(top_k, key=lambda x:-x[1])
def untorch(self):
return Grammar(self.logVariable.data.tolist()[0],
[ (l.data.tolist()[0], t, p)
for l, t, p in self.productions],
continuationType=self.continuationType)
class LikelihoodSummary(object):
'''Summarizes the terms that will be used in a likelihood calculation'''
def __init__(self):
self.uses = {}
self.normalizers = {}
self.constant = 0.
def __str__(self):
return """LikelihoodSummary(constant = %f,
uses = {%s},
normalizers = {%s})""" % (self.constant,
", ".join(
"%s: %d" % (k,
v) for k,
v in self.uses.items()),
", ".join(
"%s: %d" % (k,
v) for k,
v in self.normalizers.items()))
def record(self, actual, possibles, constant=0.):
# Variables are all normalized to be $0
if isinstance(actual, Index):
actual = Index(0)
# Make it something that we can hash
possibles = frozenset(sorted(possibles, key=hash))
self.constant += constant
self.uses[actual] = self.uses.get(actual, 0) + 1
self.normalizers[possibles] = self.normalizers.get(possibles, 0) + 1
def join(self, other):
self.constant += other.constant
for k, v in other.uses.items():
self.uses[k] = self.uses.get(k, 0) + v
for k, v in other.normalizers.items():
self.normalizers[k] = self.normalizers.get(k, 0) + v
def logLikelihood(self, grammar):
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items()) - \
sum(count * lse([grammar.expression2likelihood[p] for p in ps])
for ps, count in self.normalizers.items())
def logLikelihood_overlyGeneral(self, grammar):
"""Calculates log likelihood of this summary, given that the summary might refer to productions that don't occur in the grammar"""
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items()) - \
sum(count * lse([grammar.expression2likelihood.get(p,NEGATIVEINFINITY) for p in ps])
for ps, count in self.normalizers.items())
def numerator(self, grammar):
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items())
def denominator(self, grammar):
return \
sum(count * lse([grammar.expression2likelihood[p] for p in ps])
for ps, count in self.normalizers.items())
def toUses(self):
from collections import Counter
possibleVariables = sum( count if Index(0) in ps else 0
for ps, count in self.normalizers.items() )
actualVariables = self.uses.get(Index(0), 0.)
actualUses = {k: v
for k, v in self.uses.items()
if not k.isIndex }
possibleUses = dict(Counter(p
for ps, count in self.normalizers.items()
for p_ in ps
if not p_.isIndex
for p in [p_]*count ))
return Uses(possibleVariables, actualVariables,
possibleUses, actualUses)
class Uses(object):
'''Tracks uses of different grammar productions'''
def __init__(self, possibleVariables=0., actualVariables=0.,
possibleUses={}, actualUses={}):
self.actualVariables = actualVariables
self.possibleVariables = possibleVariables
self.possibleUses = possibleUses
self.actualUses = actualUses
def __str__(self):
return "Uses(actualVariables = %f, possibleVariables = %f, actualUses = %s, possibleUses = %s)" %\
(self.actualVariables, self.possibleVariables, self.actualUses, self.possibleUses)
def __repr__(self): return str(self)
def __mul__(self, a):
return Uses(a * self.possibleVariables,
a * self.actualVariables,
{p: a * u for p, u in self.possibleUses.items()},
{p: a * u for p, u in self.actualUses.items()})
def __imul__(self, a):
self.possibleVariables *= a
self.actualVariables *= a
for p in self.possibleUses:
self.possibleUses[p] *= a
for p in self.actualUses:
self.actualUses[p] *= a
return self
def __rmul__(self, a):
return self * a
def __radd__(self, o):
if o == 0:
return self
return self + o
def __add__(self, o):
if o == 0:
return self
def merge(x, y):
z = x.copy()
for k, v in y.items():
z[k] = v + x.get(k, 0.)
return z
return Uses(self.possibleVariables + o.possibleVariables,
self.actualVariables + o.actualVariables,
merge(self.possibleUses, o.possibleUses),
merge(self.actualUses, o.actualUses))
def __iadd__(self, o):
self.possibleVariables += o.possibleVariables
self.actualVariables += o.actualVariables
for k, v in o.possibleUses.items():
self.possibleUses[k] = self.possibleUses.get(k, 0.) + v
for k, v in o.actualUses.items():
self.actualUses[k] = self.actualUses.get(k, 0.) + v
return self
@staticmethod
def join(z, *weightedUses):
"""Consumes weightedUses"""
if not weightedUses:
Uses.empty
if len(weightedUses) == 1:
return weightedUses[0][1]
for w, u in weightedUses:
u *= exp(w - z)
total = Uses()
total.possibleVariables = sum(
u.possibleVariables for _, u in weightedUses)
total.actualVariables = sum(u.actualVariables for _, u in weightedUses)
total.possibleUses = defaultdict(float)
total.actualUses = defaultdict(float)
for _, u in weightedUses:
for k, v in u.possibleUses.items():
total.possibleUses[k] += v
for k, v in u.actualUses.items():
total.actualUses[k] += v
return total
Uses.empty = Uses()
class ContextualGrammar:
def __init__(self, noParent, variableParent, library):
self.noParent, self.variableParent, self.library = noParent, variableParent, library
self.productions = [(None,t,p) for _,t,p in self.noParent.productions ]
self.primitives = [p for _,_2,p in self.productions ]
self.continuationType = noParent.continuationType
assert variableParent.continuationType == self.continuationType
assert set(noParent.primitives) == set(variableParent.primitives)
assert set(variableParent.primitives) == set(library.keys())
for e,gs in library.items():
assert len(gs) == len(e.infer().functionArguments())
for g in gs:
assert set(g.primitives) == set(library.keys())
assert g.continuationType == self.continuationType
def untorch(self):
return ContextualGrammar(self.noParent.untorch(), self.variableParent.untorch(),
{e: [g.untorch() for g in gs ]
for e,gs in self.library.items() })
def randomWeights(self, r):
"""returns a new grammar with random weights drawn from r. calls `r` w/ old weight"""
return ContextualGrammar(self.noParent.randomWeights(r),
self.variableParent.randomWeights(r),
{e: [g.randomWeights(r) for g in gs]
for e,gs in self.library.items() })
def __str__(self):
lines = ["No parent:",str(self.noParent),"",
"Variable parent:",str(self.variableParent),"",
""]
for e,gs in self.library.items():
for j,g in enumerate(gs):
lines.extend(["Parent %s, argument index %s"%(e,j),
str(g),
""])
return "\n".join(lines)
def json(self):
return {"noParent": self.noParent.json(),
"variableParent": self.variableParent.json(),
"productions": [{"program": str(e),
"arguments": [gp.json() for gp in gs ]}
for e,gs in self.library.items() ]}
@staticmethod
def fromGrammar(g):
return ContextualGrammar(g, g,
{e: [g]*len(e.infer().functionArguments())
for e in g.primitives })
class LS: # likelihood summary
def __init__(self, owner):
self.noParent = LikelihoodSummary()
self.variableParent = LikelihoodSummary()
self.library = {e: [LikelihoodSummary() for _ in gs] for e,gs in owner.library.items() }
def record(self, parent, parentIndex, actual, possibles, constant):
if parent is None: ls = self.noParent
elif parent.isIndex: ls = self.variableParent
else: ls = self.library[parent][parentIndex]
ls.record(actual, possibles, constant=constant)
def join(self, other):
self.noParent.join(other.noParent)
self.variableParent.join(other.variableParent)
for e,gs in self.library.items():
for g1,g2 in zip(gs, other.library[e]):
g1.join(g2)
def logLikelihood(self, owner):
return self.noParent.logLikelihood(owner.noParent) + \
self.variableParent.logLikelihood(owner.variableParent) + \
sum(r.logLikelihood(g)
for e, rs in self.library.items()
for r,g in zip(rs, owner.library[e]) )
def numerator(self, owner):
return self.noParent.numerator(owner.noParent) + \
self.variableParent.numerator(owner.variableParent) + \
sum(r.numerator(g)
for e, rs in self.library.items()
for r,g in zip(rs, owner.library[e]) )
def denominator(self, owner):
return self.noParent.denominator(owner.noParent) + \
self.variableParent.denominator(owner.variableParent) + \
sum(r.denominator(g)
for e, rs in self.library.items()