diff --git a/whisper/decoding.py b/whisper/decoding.py index 457ee7ccb..ecd98a455 100644 --- a/whisper/decoding.py +++ b/whisper/decoding.py @@ -146,6 +146,10 @@ def __init__(self, model: "Whisper", initial_token_length: int): self.kv_cache = {} self.hooks = [] + key_modules = [block.attn.key for block in self.model.decoder.blocks] + value_modules = [block.attn.value for block in self.model.decoder.blocks] + self.kv_modules = key_modules + value_modules + def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor: if not self.kv_cache: self.kv_cache, self.hooks = self.model.install_kv_cache_hooks() @@ -164,9 +168,10 @@ def cleanup_caching(self): self.hooks = [] def rearrange_kv_cache(self, source_indices): - for module, tensor in self.kv_cache.items(): - # update the key/value cache to contain the selected sequences - self.kv_cache[module] = tensor[source_indices].detach() + if source_indices != list(range(len(source_indices))): + for module in self.kv_modules: + # update the key/value cache to contain the selected sequences + self.kv_cache[module] = self.kv_cache[module][source_indices].detach() class SequenceRanker: @@ -668,7 +673,6 @@ def _detect_language(self, audio_features: Tensor, tokens: Tensor): return languages, lang_probs def _main_loop(self, audio_features: Tensor, tokens: Tensor): - assert audio_features.shape[0] == tokens.shape[0] n_batch = tokens.shape[0] sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device) no_speech_probs = [np.nan] * n_batch @@ -721,8 +725,7 @@ def run(self, mel: Tensor) -> List[DecodingResult]: ) ] - # repeat the audio & text tensors by the group size, for beam search or best-of-n sampling - audio_features = audio_features.repeat_interleave(self.n_group, dim=0) + # repeat text tensors by the group size, for beam search or best-of-n sampling tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device) # call the main sampling loop