-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathetchash.go
773 lines (687 loc) · 25.5 KB
/
etchash.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
// Copyright 2015 The go-ethereum Authors
// Copyright 2015 Lefteris Karapetsas <[email protected]>
// Copyright 2015 Matthew Wampler-Doty <[email protected]>
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package etchash
import (
"encoding/binary"
"errors"
"fmt"
"io/ioutil"
"math"
"math/big"
"math/rand"
"os"
"os/user"
"path/filepath"
"reflect"
"runtime"
"strconv"
"sync"
"sync/atomic"
"time"
"unsafe"
mmap "github.com/edsrzf/mmap-go"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/hashicorp/golang-lru/simplelru"
)
var (
maxUint256 = new(big.Int).Exp(big.NewInt(2), big.NewInt(256), big.NewInt(0))
sharedLight = new(Light)
// algorithmRevision is the data structure version used for file naming.
algorithmRevision = 23
// dumpMagic is a dataset dump header to sanity check a data dump.
dumpMagic = []uint32{0xbaddcafe, 0xfee1dead}
ErrInvalidDumpMagic = errors.New("invalid dump magic")
)
const (
cacheSizeForTesting uint64 = 1024
dagSizeForTesting uint64 = 1024 * 32
cachesInMem = 2
cachesOnDisk = 3
cachesLockMmap = false
datasetsInMem = 1
datasetsOnDisk = 2
datasetsLockMmap = false
)
var DefaultDir = defaultDir()
func defaultDir() string {
home := os.Getenv("HOME")
if user, err := user.Current(); err == nil {
home = user.HomeDir
}
if runtime.GOOS == "windows" {
return filepath.Join(home, "AppData", "Etchash")
}
return filepath.Join(home, ".etchash")
}
// isLittleEndian returns whether the local system is running in little or big
// endian byte order.
func isLittleEndian() bool {
n := uint32(0x01020304)
return *(*byte)(unsafe.Pointer(&n)) == 0x04
}
// uint32Array2ByteArray returns the bytes represented by uint32 array c
func uint32Array2ByteArray(c []uint32) []byte {
buf := make([]byte, len(c)*4)
if isLittleEndian() {
for i, v := range c {
binary.LittleEndian.PutUint32(buf[i*4:], v)
}
} else {
for i, v := range c {
binary.BigEndian.PutUint32(buf[i*4:], v)
}
}
return buf
}
// bytes2Keccak256 returns the keccak256 hash as a hex string (0x prefixed)
// for a given uint32 array (cache/dataset)
func uint32Array2Keccak256(data []uint32) string {
// convert to bytes
bytes := uint32Array2ByteArray(data)
// hash with keccak256
digest := crypto.Keccak256(bytes)
// return hex string
return hexutil.Encode(digest)
}
// memoryMap tries to memory map a file of uint32s for read only access.
func memoryMap(path string, lock bool) (*os.File, mmap.MMap, []uint32, error) {
file, err := os.OpenFile(path, os.O_RDONLY, 0644)
if err != nil {
return nil, nil, nil, err
}
mem, buffer, err := memoryMapFile(file, false)
if err != nil {
file.Close()
return nil, nil, nil, err
}
for i, magic := range dumpMagic {
if buffer[i] != magic {
mem.Unmap()
file.Close()
return nil, nil, nil, ErrInvalidDumpMagic
}
}
if lock {
if err := mem.Lock(); err != nil {
mem.Unmap()
file.Close()
return nil, nil, nil, err
}
}
return file, mem, buffer[len(dumpMagic):], err
}
// memoryMapFile tries to memory map an already opened file descriptor.
func memoryMapFile(file *os.File, write bool) (mmap.MMap, []uint32, error) {
// Try to memory map the file
flag := mmap.RDONLY
if write {
flag = mmap.RDWR
}
mem, err := mmap.Map(file, flag, 0)
if err != nil {
return nil, nil, err
}
// Yay, we managed to memory map the file, here be dragons
header := *(*reflect.SliceHeader)(unsafe.Pointer(&mem))
header.Len /= 4
header.Cap /= 4
return mem, *(*[]uint32)(unsafe.Pointer(&header)), nil
}
// memoryMapAndGenerate tries to memory map a temporary file of uint32s for write
// access, fill it with the data from a generator and then move it into the final
// path requested.
func memoryMapAndGenerate(path string, size uint64, lock bool, generator func(buffer []uint32)) (*os.File, mmap.MMap, []uint32, error) {
// Ensure the data folder exists
if err := os.MkdirAll(filepath.Dir(path), 0755); err != nil {
return nil, nil, nil, err
}
// Create a huge temporary empty file to fill with data
temp := path + "." + strconv.Itoa(rand.Int())
dump, err := os.Create(temp)
if err != nil {
return nil, nil, nil, err
}
if err = dump.Truncate(int64(len(dumpMagic))*4 + int64(size)); err != nil {
return nil, nil, nil, err
}
// Memory map the file for writing and fill it with the generator
mem, buffer, err := memoryMapFile(dump, true)
if err != nil {
dump.Close()
return nil, nil, nil, err
}
copy(buffer, dumpMagic)
data := buffer[len(dumpMagic):]
generator(data)
if err := mem.Unmap(); err != nil {
return nil, nil, nil, err
}
if err := dump.Close(); err != nil {
return nil, nil, nil, err
}
if err := os.Rename(temp, path); err != nil {
return nil, nil, nil, err
}
return memoryMap(path, lock)
}
// lru tracks caches or datasets by their last use time, keeping at most N of them.
type lru struct {
what string
new func(epoch uint64, epochLength uint64) interface{}
mu sync.Mutex
// Items are kept in a LRU cache, but there is a special case:
// We always keep an item for (highest seen epoch) + 1 as the 'future item'.
cache *simplelru.LRU
future uint64
futureItem interface{}
}
// newlru create a new least-recently-used cache for either the verification caches
// or the mining datasets.
func newlru(what string, maxItems int, new func(epoch uint64, epochLength uint64) interface{}) *lru {
if maxItems <= 0 {
maxItems = 1
}
cache, _ := simplelru.NewLRU(maxItems, func(key, value interface{}) {
log.Trace("Evicted etchash "+what, "epoch", key)
})
return &lru{what: what, new: new, cache: cache}
}
// get retrieves or creates an item for the given epoch. The first return value is always
// non-nil. The second return value is non-nil if lru thinks that an item will be useful in
// the near future.
func (lru *lru) get(epoch uint64, epochLength uint64, ecip1099FBlock *uint64) (item, future interface{}) {
lru.mu.Lock()
defer lru.mu.Unlock()
// Get or create the item for the requested epoch.
item, ok := lru.cache.Get(epoch)
if !ok {
if lru.future > 0 && lru.future == epoch {
item = lru.futureItem
} else {
log.Trace("Requiring new etchash "+lru.what, "epoch", epoch)
item = lru.new(epoch, epochLength)
}
lru.cache.Add(epoch, item)
}
// Ensure pre-generation handles ecip-1099 changeover correctly
var nextEpoch = epoch + 1
var nextEpochLength = epochLength
if ecip1099FBlock != nil {
nextEpochBlock := nextEpoch * epochLength
if nextEpochBlock == *ecip1099FBlock && epochLength == epochLengthDefault {
nextEpoch = nextEpoch / 2
nextEpochLength = epochLengthECIP1099
}
}
// Update the 'future item' if epoch is larger than previously seen.
if epoch < maxEpoch-1 && lru.future != nextEpoch {
log.Trace("Requiring new future etchash "+lru.what, "epoch", nextEpoch)
future = lru.new(nextEpoch, nextEpochLength)
lru.future = nextEpoch
lru.futureItem = future
}
return item, future
}
// cache wraps an etchash cache with some metadata to allow easier concurrent use.
type cache struct {
epoch uint64 // Epoch for which this cache is relevant
epochLength uint64 // Epoch length (ECIP-1099)
uip1Epoch *uint64 // Epoch for UIP-1 activation
dump *os.File // File descriptor of the memory mapped cache
mmap mmap.MMap // Memory map itself to unmap before releasing
cache []uint32 // The actual cache data content (may be memory mapped)
once sync.Once // Ensures the cache is generated only once
used time.Time
}
// isBadCache checks a given caches/datsets keccak256 hash against bad caches (ecip-1099)
// this is incase the client has already written non-ecip1099 caches to disk,
// instead of blindly trusting as seedhashes/filename match, compare checksums.
func isBadCache(epoch uint64, epochLength uint64, data []uint32) (bool, string) {
// Check for bad caches/datasets at ecip-1099 transitions
if epochLength == epochLengthECIP1099 {
var badCache string
var badDataset string
var hash string
if epoch == 42 { // mordor
hash = uint32Array2Keccak256(data)
// bad cache generated using: geth makecache 2520001 [path] --epoch.length=30000
badCache = "0xafa2a00911843b0a67314614e629d9e550ef74da4dca2215c475a0f93333aedc"
// bad dataset generated using: geth makedag 2520001 [path] --epoch.length=30000
badDataset = "0xc07d08a9f8a2b5af0e87f68c8df9eaf28d7cef2ae3fe86d8c306d9139861c15f"
}
if epoch == 195 { // classic mainnet
hash = uint32Array2Keccak256(data)
// bad cache generated using: geth makecache 11700001 [path] --epoch.length=30000
badCache = "0x5794130ea9e433185214fb4032edbd3473499267e197d9003a6a1a5bd300b3e5"
// bad dataset generated using: geth makedag 11700001 [path] --epoch.length=30000
badDataset = "0xe9cc9df33ee6de075558fb07fd67d59068a9751c36c6e9ae38163f6da90a2240"
}
if epoch == 196 { // classic mainnet
hash = uint32Array2Keccak256(data)
// bad cache generated using: geth makecache 11760001 [path] --epoch.length=30000
badCache = "0x4a37ee8c8cb4f75c05e23369cadeec7a6ed7386226a629794a733e0249d92d5f"
// bad dataset generated using: geth makedag 11760001 [path] --epoch.length=30000
badDataset = "0xf281b059ce535a7c146c00ada26114406bc08a9657bf9147542f92f9f9f08bf2"
}
// check if cache is bad
if hash != "" && (hash == badCache || hash == badDataset) {
// cache/dataset is bad.
return true, hash
}
// cache is good
return false, hash
}
// cache is not ecip-1099 enabled
return false, ""
}
// newCache creates a new etchash verification cache and returns it as a plain Go
// interface to be usable in an LRU cache.
func newCache(epoch uint64, epochLength uint64, uip1Epoch *uint64) interface{} {
return &cache{epoch: epoch, epochLength: epochLength, uip1Epoch: uip1Epoch}
}
// generate ensures that the cache content is generated before use.
func (c *cache) generate(dir string, limit int, lock bool, test bool) {
c.once.Do(func() {
size := cacheSize(c.epoch)
seed := seedHash(c.epoch*c.epochLength + 1)
if test {
size = 1024
}
// If we don't store anything on disk, generate and return.
if dir == "" {
c.cache = make([]uint32, size/4)
generateCache(c.cache, c.epoch, c.epochLength, c.uip1Epoch, seed)
return
}
// Disk storage is needed, this will get fancy
var endian string
if !isLittleEndian() {
endian = ".be"
}
path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x%s", algorithmRevision, seed[:8], endian))
logger := log.New("epoch", c.epoch)
// We're about to mmap the file, ensure that the mapping is cleaned up when the
// cache becomes unused.
runtime.SetFinalizer(c, (*cache).finalizer)
// Try to load the file from disk and memory map it
var err error
c.dump, c.mmap, c.cache, err = memoryMap(path, lock)
if err == nil {
logger.Debug("Loaded old etchash cache from disk")
isBad, hash := isBadCache(c.epoch, c.epochLength, c.cache)
if isBad {
// cache is bad. Set err, then continue as if cache could not be read from disk.
err = fmt.Errorf("Cache with hash %s has been flagged as bad", hash)
} else {
return
}
}
logger.Debug("Failed to load old etchash cache", "err", err)
// No usable previous cache available, create a new cache file to fill
c.dump, c.mmap, c.cache, err = memoryMapAndGenerate(path, size, lock, func(buffer []uint32) { generateCache(buffer, c.epoch, c.epochLength, c.uip1Epoch, seed) })
if err != nil {
logger.Error("Failed to generate mapped etchash cache", "err", err)
c.cache = make([]uint32, size/4)
generateCache(c.cache, c.epoch, c.epochLength, c.uip1Epoch, seed)
}
// Iterate over all previous instances and delete old ones
for ep := int(c.epoch) - limit; ep >= 0; ep-- {
seed := seedHash(uint64(ep)*c.epochLength + 1)
path := filepath.Join(dir, fmt.Sprintf("cache-R%d-%x%s", algorithmRevision, seed[:8], endian))
os.Remove(path)
}
})
}
// finalizer unmaps the memory and closes the file.
func (c *cache) finalizer() {
if c.mmap != nil {
c.mmap.Unmap()
c.dump.Close()
c.mmap, c.dump = nil, nil
}
}
func (c *cache) compute(dagSize uint64, hash common.Hash, nonce uint64) (common.Hash, common.Hash) {
// ret := C.etchash_light_compute_internal(cache.ptr, C.uint64_t(dagSize), hashToH256(hash), C.uint64_t(nonce))
digest, result := hashimotoLight(dagSize, c.cache, hash.Bytes(), nonce)
// Caches are unmapped in a finalizer. Ensure that the cache stays alive
// until after the call to hashimotoLight so it's not unmapped while being used.
runtime.KeepAlive(c)
return common.BytesToHash(digest), common.BytesToHash(result)
}
// Light implements the Verify half of the proof of work. It uses a few small
// in-memory caches to verify the nonces found by Full.
type Light struct {
test bool // If set, use a smaller cache size
mu sync.Mutex // Protects the per-epoch map of verification caches
caches map[uint64]*cache // Currently maintained verification caches
future *cache // Pre-generated cache for the estimated future DAG
NumCaches int // Maximum number of caches to keep before eviction (only init, don't modify)
ecip1099FBlock *uint64
uip1Epoch *uint64
}
// Verify checks whether the block's nonce is valid.
func (l *Light) Verify(block Block) bool {
// TODO: do etchash_quick_verify before getCache in order
// to prevent DOS attacks.
blockNum := block.NumberU64()
if blockNum >= epochLengthDefault*2048 {
log.Debug(fmt.Sprintf("block number %d too high, limit is %d", blockNum, epochLengthDefault*2048))
return false
}
difficulty := block.Difficulty()
/* Cannot happen if block header diff is validated prior to PoW, but can
happen if PoW is checked first due to parallel PoW checking.
We could check the minimum valid difficulty but for SoC we avoid (duplicating)
Ethereum protocol consensus rules here which are not in scope of Etchash
*/
if difficulty.Cmp(common.Big0) == 0 {
log.Debug("invalid block difficulty")
return false
}
epochLength := calcEpochLength(blockNum, l.ecip1099FBlock)
epoch := calcEpoch(blockNum, epochLength)
cache := l.getCache(blockNum)
dagSize := datasetSize(epoch)
if l.test {
dagSize = dagSizeForTesting
}
// Recompute the hash using the cache.
mixDigest, result := cache.compute(uint64(dagSize), block.HashNoNonce(), block.Nonce())
// avoid mixdigest malleability as it's not included in a block's "hashNononce"
if block.MixDigest() != mixDigest {
return false
}
// The actual check.
target := new(big.Int).Div(maxUint256, difficulty)
return result.Big().Cmp(target) <= 0
}
// compute() to get mixhash and result
func (l *Light) Compute(blockNum uint64, hashNoNonce common.Hash, nonce uint64) (mixDigest common.Hash, result common.Hash) {
epochLength := calcEpochLength(blockNum, l.ecip1099FBlock)
epoch := calcEpoch(blockNum, epochLength)
cache := l.getCache(blockNum)
dagSize := datasetSize(epoch)
return cache.compute(uint64(dagSize), hashNoNonce, nonce)
}
func (l *Light) getCache(blockNum uint64) *cache {
var c *cache
epochLength := calcEpochLength(blockNum, l.ecip1099FBlock)
epoch := calcEpoch(blockNum, epochLength)
// If we have a PoW for that epoch, use that
l.mu.Lock()
if l.caches == nil {
l.caches = make(map[uint64]*cache)
}
if l.NumCaches == 0 {
l.NumCaches = 3
}
c = l.caches[epoch]
if c == nil {
// No cached DAG, evict the oldest if the cache limit was reached
if len(l.caches) >= l.NumCaches {
var evict *cache
for _, cache := range l.caches {
if evict == nil || evict.used.After(cache.used) {
evict = cache
}
}
log.Debug(fmt.Sprintf("Evicting DAG for epoch %d in favour of epoch %d", evict.epoch, epoch))
delete(l.caches, evict.epoch)
}
// If we have the new DAG pre-generated, use that, otherwise create a new one
if l.future != nil && l.future.epoch == epoch {
log.Debug(fmt.Sprintf("Using pre-generated DAG for epoch %d", epoch))
c, l.future = l.future, nil
} else {
log.Debug(fmt.Sprintf("No pre-generated DAG available, creating new for epoch %d", epoch))
c = &cache{epoch: epoch, epochLength: epochLength}
}
l.caches[epoch] = c
var nextEpoch = epoch + 1
var nextEpochLength = epochLength
var nextEpochBlock = nextEpoch * epochLength
if l.ecip1099FBlock != nil {
if nextEpochBlock == *l.ecip1099FBlock && epochLength == epochLengthDefault {
nextEpoch = nextEpoch / 2
nextEpochLength = epochLengthECIP1099
}
}
// If we just used up the future cache, or need a refresh, regenerate
if l.future == nil || l.future.epoch <= epoch {
log.Debug(fmt.Sprintf("Pre-generating DAG for epoch %d", nextEpoch))
l.future = &cache{epoch: nextEpoch, epochLength: nextEpochLength}
go l.future.generate(defaultDir(), cachesOnDisk, cachesLockMmap, l.test)
}
}
c.used = time.Now()
l.mu.Unlock()
// Wait for generation finish and return the cache
c.generate(defaultDir(), cachesOnDisk, cachesLockMmap, l.test)
return c
}
// dataset wraps an etchash dataset with some metadata to allow easier concurrent use.
type dataset struct {
epoch uint64 // Epoch for which this cache is relevant
epochLength uint64 // Epoch length (ECIP-1099)
uip1Epoch *uint64 // Epoch for UIP-1 activation
dump *os.File // File descriptor of the memory mapped cache
mmap mmap.MMap // Memory map itself to unmap before releasing
dataset []uint32 // The actual cache data content
once sync.Once // Ensures the cache is generated only once
done uint32 // Atomic flag to determine generation status
used time.Time
}
// newDataset creates a new etchash mining dataset and returns it as a plain Go
// interface to be usable in an LRU cache.
func newDataset(epoch uint64, epochLength uint64, uip1Epoch *uint64) interface{} {
return &dataset{epoch: epoch, epochLength: epochLength, uip1Epoch: uip1Epoch}
}
// generate ensures that the dataset content is generated before use.
func (d *dataset) generate(dir string, limit int, lock bool, test bool) {
d.once.Do(func() {
// Mark the dataset generated after we're done. This is needed for remote
defer atomic.StoreUint32(&d.done, 1)
csize := cacheSize(d.epoch)
dsize := datasetSize(d.epoch)
seed := seedHash(d.epoch*d.epochLength + 1)
if test {
csize = 1024
dsize = 32 * 1024
}
// If we don't store anything on disk, generate and return
if dir == "" {
cache := make([]uint32, csize/4)
generateCache(cache, d.epoch, d.epochLength, d.uip1Epoch, seed)
d.dataset = make([]uint32, dsize/4)
generateDataset(d.dataset, d.epoch, d.epochLength, cache)
return
}
// Disk storage is needed, this will get fancy
var endian string
if !isLittleEndian() {
endian = ".be"
}
path := filepath.Join(dir, fmt.Sprintf("full-R%d-%x%s", algorithmRevision, seed[:8], endian))
logger := log.New("epoch", d.epoch)
// We're about to mmap the file, ensure that the mapping is cleaned up when the
// cache becomes unused.
runtime.SetFinalizer(d, (*dataset).finalizer)
// Try to load the file from disk and memory map it
var err error
d.dump, d.mmap, d.dataset, err = memoryMap(path, lock)
if err == nil {
logger.Debug("Loaded old etchash dataset from disk", "path", path)
isBad, hash := isBadCache(d.epoch, d.epochLength, d.dataset)
if isBad {
// dataset is bad. Continue as if cache could not be read from disk.
err = fmt.Errorf("Dataset with hash %s has been flagged as bad", hash)
// regenerating DAG is a intensive process, we should let the user know
// why it's happening.
logger.Error("Bad DAG on disk", "path", path, "hash", hash)
} else {
return
}
}
logger.Debug("Failed to load old etchash dataset", "err", err)
// No usable previous dataset available, create a new dataset file to fill
cache := make([]uint32, csize/4)
generateCache(cache, d.epoch, d.epochLength, d.uip1Epoch, seed)
d.dump, d.mmap, d.dataset, err = memoryMapAndGenerate(path, dsize, lock, func(buffer []uint32) { generateDataset(buffer, d.epoch, d.epochLength, cache) })
if err != nil {
logger.Error("Failed to generate mapped etchash dataset", "err", err)
d.dataset = make([]uint32, dsize/2)
generateDataset(d.dataset, d.epoch, d.epochLength, cache)
}
// Iterate over all previous instances and delete old ones
for ep := int(d.epoch) - limit; ep >= 0; ep-- {
seed := seedHash(uint64(ep)*d.epochLength + 1)
path := filepath.Join(dir, fmt.Sprintf("full-R%d-%x%s", algorithmRevision, seed[:8], endian))
os.Remove(path)
}
})
}
// generated returns whether this particular dataset finished generating already
// or not (it may not have been started at all). This is useful for remote miners
// to default to verification caches instead of blocking on DAG generations.
func (d *dataset) generated() bool {
return atomic.LoadUint32(&d.done) == 1
}
// finalizer closes any file handlers and memory maps open.
func (d *dataset) finalizer() {
if d.mmap != nil {
d.mmap.Unmap()
d.dump.Close()
d.mmap, d.dump = nil, nil
}
}
// MakeDAG generates a new etchash dataset and optionally stores it to disk.
func MakeDAG(block uint64, epochLength uint64, dir string) {
epoch := calcEpoch(block, epochLength)
d := dataset{epoch: epoch, epochLength: epochLength}
d.generate(dir, math.MaxInt32, false, false)
}
// Full implements the Search half of the proof of work.
type Full struct {
Dir string // use this to specify a non-default DAG directory
test bool // if set use a smaller DAG size
turbo bool
hashRate int32
mu sync.Mutex // protects dag
current *dataset // current full DAG
ecip1099FBlock *uint64
uip1Epoch *uint64
}
func (pow *Full) getDAG(blockNum uint64) (d *dataset) {
epochLength := calcEpochLength(blockNum, pow.ecip1099FBlock)
epoch := calcEpoch(blockNum, epochLength)
pow.mu.Lock()
if pow.current != nil && pow.current.epoch == epoch {
d = pow.current
} else {
d = &dataset{epoch: epoch, epochLength: uint64(epochLength)}
pow.current = d
}
pow.mu.Unlock()
// wait for it to finish generating.
d.generate(defaultDir(), datasetsOnDisk, datasetsLockMmap, pow.test)
return d
}
func (pow *Full) Search(block Block, stop <-chan struct{}, index int) (nonce uint64, mixDigest []byte) {
dag := pow.getDAG(block.NumberU64())
r := rand.New(rand.NewSource(time.Now().UnixNano()))
diff := block.Difficulty()
i := int64(0)
starti := i
start := time.Now().UnixNano()
previousHashrate := int32(0)
nonce = uint64(r.Int63())
hash := block.HashNoNonce()
target := new(big.Int).Div(maxUint256, diff)
for {
select {
case <-stop:
atomic.AddInt32(&pow.hashRate, -previousHashrate)
return 0, nil
default:
i++
// we don't have to update hash rate on every nonce, so update after
// first nonce check and then after 2^X nonces
if i == 2 || ((i % (1 << 16)) == 0) {
elapsed := time.Now().UnixNano() - start
hashes := (float64(1e9) / float64(elapsed)) * float64(i-starti)
hashrateDiff := int32(hashes) - previousHashrate
previousHashrate = int32(hashes)
atomic.AddInt32(&pow.hashRate, hashrateDiff)
}
digest, result := hashimotoFull(dag.dataset, hash.Bytes(), nonce)
// result := h256ToHash(ret.result).Big()
bigres := common.BytesToHash(result).Big()
// TODO: disagrees with the spec https://github.com/ethereum/wiki/wiki/Etchash#mining
if digest != nil && bigres.Cmp(target) <= 0 {
mixDigest = digest
atomic.AddInt32(&pow.hashRate, -previousHashrate)
return nonce, mixDigest
}
nonce += 1
}
if !pow.turbo {
time.Sleep(20 * time.Microsecond)
}
}
}
func (pow *Full) GetHashrate() int64 {
return int64(atomic.LoadInt32(&pow.hashRate))
}
func (pow *Full) Turbo(on bool) {
// TODO: this needs to use an atomic operation.
pow.turbo = on
}
// Etchash combines block verification with Light and
// nonce searching with Full into a single proof of work.
type Etchash struct {
*Light
*Full
}
// New creates an instance of the proof of work.
func New(ecip1099FBlock *uint64, uip1FEpoch *uint64) *Etchash {
var light = new(Light)
light.ecip1099FBlock = ecip1099FBlock
light.uip1Epoch = uip1FEpoch
return &Etchash{light, &Full{turbo: true, ecip1099FBlock: ecip1099FBlock, uip1Epoch: uip1FEpoch}}
}
// NewShared creates an instance of the proof of work., where a single instance
// of the Light cache is shared across all instances created with NewShared.
func NewShared(ecip1099FBlock *uint64, uip1FEpoch *uint64) *Etchash {
return &Etchash{sharedLight, &Full{turbo: true, ecip1099FBlock: ecip1099FBlock, uip1Epoch: uip1FEpoch}}
}
// NewForTesting creates a proof of work for use in unit tests.
// It uses a smaller DAG and cache size to keep test times low.
// DAG files are stored in a temporary directory.
//
// Nonces found by a testing instance are not verifiable with a
// regular-size cache.
func NewForTesting(ecip1099FBlock *uint64, uip1FEpoch *uint64) (*Etchash, error) {
dir, err := ioutil.TempDir("", "etchash-test")
if err != nil {
return nil, err
}
return &Etchash{&Light{test: true}, &Full{Dir: dir, test: true}}, nil
}