-
-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtester.py
243 lines (222 loc) · 10.6 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from tqdm import tqdm
import os
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
from matplotlib import pyplot as plt
import torch
from modeling.model import Modelbuilder
from utils.checkpoint import Checkpointer
from utils.metric_logger import MetricLogger
from utils.logger import setup_logger
from utils.misc import mkdir, prefix_dict
from utils.timer import Timer, get_time_str
from data.build import make_data_loader
from vision.visualizer_human import draw_2d_pose
from vision.visualizer_hand import plot_two_hand_2d
from vision.visualization import de_transform
def test(cfg, model=None):
torch.cuda.empty_cache() # TODO check if it helps
cpu_device = torch.device("cpu")
if cfg.VIS.FLOPS:
# device = cpu_device
device = torch.device("cuda:0")
else:
device = torch.device(cfg.DEVICE)
if model is None:
# load model from outputs
model = Modelbuilder(cfg)
model.to(device)
checkpointer = Checkpointer(model, save_dir=cfg.OUTPUT_DIR)
_ = checkpointer.load(cfg.WEIGHTS)
data_loaders = make_data_loader(cfg, is_train=False)
if cfg.VIS.FLOPS:
model.eval()
from thop import profile
for idx, batchdata in enumerate(data_loaders[0]):
with torch.no_grad():
flops, params = profile(model, inputs=({k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batchdata.items()}, False))
print('flops', flops, 'params', params)
exit()
if cfg.TEST.RECOMPUTE_BN:
tmp_data_loader = make_data_loader(cfg, is_train=True, dataset_list=cfg.DATASETS.TEST)
model.train()
for idx, batchdata in enumerate(tqdm(tmp_data_loader)):
with torch.no_grad():
model({k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batchdata.items()}, is_train=True)
#cnt = 0
#while cnt < 1000:
# for idx, batchdata in enumerate(tqdm(tmp_data_loader)):
# with torch.no_grad():
# model({k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batchdata.items()}, is_train=True)
# cnt += 1
checkpointer.save("model_bn")
model.eval()
elif cfg.TEST.TRAIN_BN:
model.train()
else:
model.eval()
dataset_names = cfg.DATASETS.TEST
meters = MetricLogger()
#if cfg.TEST.PCK and cfg.DOTEST and 'h36m' in cfg.OUTPUT_DIR:
# all_preds = np.zeros((len(data_loaders), cfg.KEYPOINT.NUM_PTS, 3), dtype=np.float32)
cpu = lambda x: x.to(cpu_device).numpy() if isinstance(x, torch.Tensor) else x
logger = setup_logger("tester", cfg.OUTPUT_DIR)
for data_loader, dataset_name in zip(data_loaders, dataset_names):
print('Loading ', dataset_name)
dataset = data_loader.dataset
logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
total_timer = Timer()
total_timer.tic()
predictions = []
#if 'h36m' in cfg.OUTPUT_DIR:
# err_joints = 0
#else:
err_joints = np.zeros((cfg.TEST.IMS_PER_BATCH, int(cfg.TEST.MAX_TH)))
total_joints = 0
for idx, batchdata in enumerate(tqdm(data_loader)):
if cfg.VIS.VIDEO and not 'h36m' in cfg.OUTPUT_DIR:
for k, v in batchdata.items():
try:
#good 1 2 3 4 5 6 7 8 12 16 30
# 4 17.4 vs 16.5
# 30 41.83200 vs 40.17562
#bad 0 22
#0 43.78544 vs 45.24059
#22 43.01385 vs 43.88636
vis_idx = 16
batchdata[k] = v[:, vis_idx, None]
except:
pass
if cfg.VIS.VIDEO_GT:
for k, v in batchdata.items():
try:
vis_idx = 30
batchdata[k] = v[:, vis_idx:vis_idx+2]
except:
pass
joints = cpu(batchdata['points-2d'].squeeze())[0]
orig_img = de_transform(cpu(batchdata['img'].squeeze()[None, ...])[0][0])
# fig = plt.figure()
# ax = fig.add_subplot(111)
ax = display_image_in_actual_size(orig_img.shape[1], orig_img.shape[2])
if 'h36m' in cfg.OUTPUT_DIR:
draw_2d_pose(joints, ax)
orig_img = orig_img[::-1]
else:
visibility = cpu(batchdata['visibility'].squeeze())[0]
plot_two_hand_2d(joints, ax, visibility)
# plot_two_hand_2d(joints, ax)
ax.imshow(orig_img.transpose((1,2,0)))
ax.axis('off')
output_folder = os.path.join("outs", "video_gt", dataset_name)
mkdir(output_folder)
plt.savefig(
os.path.join(output_folder, "%08d" % idx),
bbox_inches="tight", pad_inches=0)
plt.cla()
plt.clf()
plt.close()
continue
#print('batchdatapoints-3d', batchdata['points-3d'])
batch_size = cfg.TEST.IMS_PER_BATCH
with torch.no_grad():
loss_dict, metric_dict, output = model(
{k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batchdata.items()},
is_train=False)
meters.update(**prefix_dict(loss_dict, dataset_name))
meters.update(**prefix_dict(metric_dict, dataset_name))
# udpate err_joints
if cfg.VIS.VIDEO:
joints = cpu(output['batch_locs'].squeeze())
if joints.shape[0] == 1:
joints= joints[0]
try:
orig_img = de_transform(cpu(batchdata['img'].squeeze()[None, ...])[0][0])
except:
orig_img = de_transform(cpu(batchdata['img'].squeeze()[None, ...])[0]) # fig = plt.figure()
# ax = fig.add_subplot(111)
ax = display_image_in_actual_size(orig_img.shape[1], orig_img.shape[2])
if 'h36m' in cfg.OUTPUT_DIR:
draw_2d_pose(joints, ax)
orig_img = orig_img[::-1]
else:
visibility = cpu(batchdata['visibility'].squeeze())
if visibility.shape[0] == 1:
visibility= visibility[0]
plot_two_hand_2d(joints, ax, visibility)
ax.imshow(orig_img.transpose((1,2,0)))
ax.axis('off')
output_folder = os.path.join(cfg.OUTPUT_DIR, "video", dataset_name)
mkdir(output_folder)
plt.savefig(
os.path.join(output_folder, "%08d" % idx),
bbox_inches="tight", pad_inches=0)
plt.cla()
plt.clf()
plt.close()
# plt.show()
if cfg.TEST.PCK and cfg.DOTEST:
#if 'h36m' in cfg.OUTPUT_DIR:
# err_joints += metric_dict['accuracy'] * output['total_joints']
# total_joints += output['total_joints']
# # all_preds
#else:
for i in range(batch_size):
err_joints = np.add(err_joints, output['err_joints'])
total_joints += sum(output['total_joints'])
if idx % cfg.VIS.SAVE_PRED_FREQ == 0 and (cfg.VIS.SAVE_PRED_LIMIT == -1 or idx < cfg.VIS.SAVE_PRED_LIMIT * cfg.VIS.SAVE_PRED_FREQ):
# print(meters)
for i in range(batch_size):
predictions.append(
(
{k: (cpu(v[i]) if not isinstance(v, int) else v) for k, v in batchdata.items()},
{k: (cpu(v[i]) if not isinstance(v, int) else v) for k, v in output.items()},
)
)
if cfg.VIS.SAVE_PRED_LIMIT!= -1 and idx > cfg.VIS.SAVE_PRED_LIMIT * cfg.VIS.SAVE_PRED_FREQ:
break
# if not cfg.DOTRAIN and cfg.SAVE_PRED:
# if cfg.VIS.SAVE_PRED_LIMIT != -1 and idx < cfg.VIS.SAVE_PRED_LIMIT:
# for i in range(batch_size):
# predictions.append(
# (
# {k: (cpu(v[i]) if not isinstance(v, int) else v) for k, v in batchdata.items()},
# {k: (cpu(v[i]) if not isinstance(v, int) else v) for k, v in output.items()},
# )
# )
# if idx == cfg.VIS.SAVE_PRED_LIMIT:
# break
#if cfg.TEST.PCK and cfg.DOTEST and 'h36m' in cfg.OUTPUT_DIR:
# logger.info('accuracy0.5: {}'.format(err_joints/total_joints))
# dataset.evaluate(all_preds)
# name_value, perf_indicator = dataset.evaluate(all_preds)
# names = name_value.keys()
# values = name_value.values()
# num_values = len(name_value)
# logger.info(' '.join(['| {}'.format(name) for name in names]) + ' |')
# logger.info('|---' * (num_values) + '|')
# logger.info(' '.join(['| {:.3f}'.format(value) for value in values]) + ' |')
total_time = total_timer.toc()
total_time_str = get_time_str(total_time)
logger.info("Total run time: {} ".format(total_time_str))
if cfg.OUTPUT_DIR: #and cfg.VIS.SAVE_PRED:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
mkdir(output_folder)
torch.save(predictions, os.path.join(output_folder, cfg.VIS.SAVE_PRED_NAME))
if cfg.DOTEST and cfg.TEST.PCK:
print(err_joints.shape)
torch.save(err_joints * 1.0 / total_joints, os.path.join(output_folder, "pck.pth"))
logger.info("{}".format(str(meters)))
model.train()
return meters.get_all_avg()
def display_image_in_actual_size(height, width):
dpi = mpl.rcParams['figure.dpi']
# What size does the figure need to be in inches to fit the image?
figsize = width / float(dpi), height / float(dpi)
# Create a figure of the right size with one axes that takes up the full figure
fig = plt.figure(figsize=figsize)
ax = fig.add_axes([0, 0, 1, 1])
# Hide spines, ticks, etc.
ax.axis('off')
return ax