-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
41 lines (32 loc) · 1.25 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import cv2
import os
import ast
import pandas as pd
from torch.utils.data import Dataset
class SeqMNISTDataset(Dataset):
def __init__(self, filename):
self.seq_mnist = np.load(filename)
def __len__(self):
return self.seq_mnist.shape[1] # T,N,W,H
def __getitem__(self, idx):
outputs = np.expand_dims(self.seq_mnist, axis=2)
return outputs[:,idx,:,:,:]
class FaceSeqDataset(Dataset):
def __init__(self, root_dir, csv_filename, transform=None):
self.image_channel = 3
self.image_shape =(64, 64)
self.root_dir = root_dir
self.image_frame = pd.read_csv(csv_filename)
def __len__(self):
return len(self.image_frame)
def __getitem__(self, idx):
image_names, labels = map(ast.literal_eval, self.image_frame.iloc[idx])
outputs = np.empty((0, self.image_channel, *self.image_shape), int)
for image_name in image_names:
image = cv2.imread(os.path.join(self.root_dir, image_name))
image = cv2.resize(image, self.image_shape)
image = np.transpose(image, (2,0,1))
image = image.reshape(1, *image.shape)
outputs = np.append(outputs, image, axis=0)
return outputs, np.array(labels)