-
Differentiation is the process of finding derivatives. Differentiation is an operation that transforms a function
$f$ into a new function$f'$ . When the independent variable is$x$ , the differentiation operation is denotes as$\frac{d}{dx}[ ]$ , which can be read as the derivative with respect to$x$ . According to the power rule, if$n$ is a posiitive integer, then...$\frac{d}{dx}[x^n] = nx^{n-1}$ .- For example...
$\frac{d}{dx}[x^5]= 5x^4$ ,$\frac{d}{dx}[2x^3]=6x^2$ , and$\frac{d}{dx}[4x^1]=4$
- For example...
-
If
$c$ is a constant and the function$f$ is differentiable at$x$ , then so is $$cf$ and$(cf)'(x) = cf'(x)$ . Thus,$\frac{d}{dx}[cf(x)]=c \frac{d}{dx}[f(x)]$ - For example,
$\frac{d}{dx}[x^8] = \frac{d}{dx}[4x^8] = 32x^7$ and$2\frac{d}{dx}[x^2] = \frac{d}{dx}[2x^2] = 4x$
- For example,
- If
$f$ and$g$ are both differentiable at$x$ , so is$f+g$ . Thus,$\frac{d}{dx}[f(x)+g(x)]= \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$ .- For example,
$\frac{d}{dx}[2x+x^3]= \frac{d}{dx}[2x] + \frac{d}{dx}[x^3] = 2 + 3x^2$
- For example,
- Additionally, is
$f$ and$g$ are both differentiable at$x$ , so is$f-g$ . Thus,$\frac{d}{dx}[f(x)-g(x)]= \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$ .- For example,
$\frac{d}{dx}[3x-2x]= \frac{d}{dx}[3x] + \frac{d}{dx}[2] = 3-2 = 1$
- For example,
- If
$f$ and$g$ are both differentiable at$x$ , so is the product of$f$ and$g$ ,$f⋅g$ . According to the product rule,$\frac{d}{dx}[f(x)⋅g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$ .- For example,
$\frac{d}{dx}[(4x^2-1)(7x^3+x)]= (4x^2-1)\frac{d}{dx}[7x^3+x] + (7x^3+x)\frac{d}{dx}[4x^2-1] = (4x^2-1)(21x^2+1) + (7x^3+x)(8x) = 140x^4 - 9x^2 -1$
- For example,
- If f and g are differentiable at x and g(x)≠0, then
$\frac{f}{g}$ is differentiable and$\frac{d}{dx} [\frac{f(x)}{g(x)}] = \frac{g(x)\frac{d}{dx}[f(x)] - f(x)\frac{d}{dx}[g(x)]}{[g(x]^2}$
- Given the functions
$f$ and$g$ , we can find the composition,$f∘g$ , which is expressed as$(f∘g)(x) = f(g(x))$ . For example, if$f(x)=sinx$ and$g(x)=x^2-1$ ,$f(g(x))=sin(x^2-1)$ . - To solve these types of problems we introduce the variable
$u=g(x)$ , such that$f(g(x)) = f(u)$ . Using the previous example, if$u=x^2-1$ , then$f(u)=sin(u)$ . - Now, if we want the derivative of functions like
$y=sin(x^2-1)$ we say that$\frac{dy}{dx} = \frac{dy}{du} ⋅ \frac{du}{dx} = \frac{d}{du}[ ] ⋅ \frac{d}{dx}[ ]$ - For example,
$\frac{dy}{dx} = \frac{dy}{du} ⋅ \frac{du}{dx} = \frac{d}{du}[sin(u)] ⋅ \frac{d}{dx}[x^2-1] = cos(u) ⋅ 2x = 2xcos(u)$ . Now, since$u=x^2-1$ , we can substitute in$u$ to get the final solution$2xcos(x^2-1)$ .
- For example,
- Let's try another example... find
$\frac{d}{dx} [4cos(x^3)]$ . First, we say$y=4cos(x^3)$ and$u=x^3$ , so$y=4cos(u)$ . Now, to solve this we say$\frac{dy}{dx} = \frac{d}{du}[4cos(u)] ⋅ \frac{d}{dx}[x^3] = -4sin(u) ⋅ 3x^2 = -12x^2sin(u) = -12x^2sin(x^3)$
- Between any two points on a well-behaved curve
$y=f(x)$ where the curve crosses the x-axis, there is atleast one point$b$ where the tangent to the curve is horizontal. - Thus, if the function
$f$ is differentiable between the points on the x-axis$(a,c)$ and is continous on the points$[a,c]$ , then at atleast one point$b$ ...$f(b)' = \frac{f(c)-f(a)}{c-a}$ - Now, here's how we find
$b$ :- First, find
$f(a)$ and$f(c)$ - Next, find
$f'(x)$ , which is the derivative of$f(x)$ - Plug variables from 1 and 2 into the forumula
$f(b)' = \frac{f(c)-f(a)}{c-a}$ - Solve for
$b$ and select points that fall within [a,c]
- First, find
- Let's try an example... let
$f(x)=x^3+1$ and show it satifies the mean value theorem on [1,2]-
$f(a) = 1^3+1=2$ and$f(c)=2^3+1=9$ - Now,
$f'(x)= \frac{d}{dx}[x^3+1] = 3x^2$ - 3b^2 = \frac{9-2){2-1} = 7$
- If
$3b^2=7$ , then$b^2=\frac{7}{3}$ and thus,$b= \sqrt{\frac{7}{3}}$ and$-\sqrt{\frac{7}{3}}$ . However, only the first of those two solutions falls within the range [1,2], fulfiling the mean value theorem.
-
- Integration is the process of finding anti-derivatives. If
$\frac{d}{dx}[F(x)]=f(x)$ , then functions of the form$F(x)+c$ are anti-derivatives of$f(x)$ . We denote this relationship as$\int f(x)dx = F(X)+c$ .- For example,
$\frac{x^3}{3}$ ,$\frac{x^3}{3}+2$ , and$\frac{x^3}{3}-π$ are all anti-derivatives of the function$f(x)=x^2$ since$\frac{d}{dx}[\frac{x^3}{3}] = \frac{d}{dx}[\frac{x^3}{3}+2] = \frac{d}{dx}[\frac{x^3}{3}-π] = x^2$
- For example,
- Furthermore, if we differentiate the anti-derivative of a function,
$f(x)$ , we get$f(x)$ back again...$\frac{d}{dx}[\int f(x)dx] = \frac{d}{dx}[F(x)] = f(x)$ .- For example,
$\frac{d}{dx}[\int 2x^2dx] = \frac{d}{dx}[\frac{2x^3}{3}] = \frac{6x^2}{3} = 2x^2$
- For example,
-
$u$ -substitution can turn complex integration problems into simpler ones. If we want to evaluate a complex integral$\int h(x)dx$ we can say that$\int h(x)dx = \int f(g(x))g'(x)dx = \int[f(u)\frac{du}{dx}]dx = F(u)+c$ where$u=g(x)$ and$\frac{du}{dx} = g'(x)$ . - Now, to solve these problems follow these steps:
- Start with problem is
$\int f(g(x))g'(x)dx$ form - Make a choice for
$u=g(x)$ - Make a choice for
$\frac{du}{dx} = g'(x)$ , then find$du$ which is$du= g'(x)dx$ . - Sub
$u=g(x)$ and$du=g'(x)dx$ into the problem, such that it is in the form$\int f(u)du$ - Evaluate the resultant integral from step 4, then sub
$g(x)$ back in for$u$
- Start with problem is
- Let's try an example...
$\int (x^2+1)^{50} ⋅ 2xdx$ - Now, we say
$u=x^2+1$ and$\frac{du}{dx}=2x$ , so$du=2xdx$ - The after substitution, the resultant integral is
$\int (u)^{50}⋅du$ - After evaluating the integral we get
$\frac{u^{51}}{51}+c$ , then after substituting$g(x)$ back in we get$\frac{(x^2+1)^{51}}{51}+c$
- Now, we say
- Additional techniques of integration are as follows:
$\int dx= x+c$ $\int adx = ax+c$ -
$\int x^r dx = \frac{x^{r+1}}{r+1} + c$ ,$r≠1$ $\int \frac{1}{x} = ln|x|+c$ $\int e^xdx = e^x+c$ $\int a^xdx = \frac{a^x}{ln(a)} +c$
- Integration by parts is a technique for evaluating integrals that do not fit basic formulas. The formula for integration by parts allows one ot reduce complex integration problems into easier ones and is defined as
$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx$ - Here's how to solve the eqution above...
- Write the equation in
$\int f(x)g'(x)dx$ form - Identify
$f(x)$ , then say$f(x)=u$ - Calculate
$f'(x)$ , then say$f'(x)(dx) = du$ - Identify
$g'(x)$ and say$g'(x)dx = dv$ - Now, calcualte
$g(x)$ and say$g(x)=v$ - Write
$\int (u)(dv) = (u)(v) - \int (v)(du)$ or for definite integrals write$\int^{b}_{a} (u)(dv) = (u)(v)]_b^a - \int^{b}_a (v)(du)$ - Plug variables back into formula from 6, then evaluate.
- Write the equation in
- For example, evaluate
$\int xe^xdx$ - First, we say
$f(x) = x$ , so$x=u$ - Then, we find
$f'(x)$ , which is 1, so$f'(x)dx= 1dx$ - Next, we say
$g'(x) = e^x$ , so$e^xdx = dv$ - Then we calculate
$g(x)$ and get$e^x=v$ - After substiution into the formula
$\int (u)(dv) = (u)(v) - \int (v)(du)$ we get$\int xe^xdx = xe^x - \int e^xdx = xe^x - e^x +c$
- First, we say
- If
$f$ is continous on [a,b] and if$F$ is the anti-derivative of$f$ on [a,b], then$\int^{b}_{a} f(x)dx = F(x)]_a^b = F(b)-F(a)$ - Evaluate
$\int^{2}_{1} xdx$ $\int^{2}_{1}xdx = \frac{x^2}{2}]_1^2 = \frac{2^2}{2} - \frac{1^2}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2}$
- Evaluate
- If
$a$ is in the domain of$f$ , then$\int^{a}_{a} f(x)dx = 0$ because there is no area under th e curve$y=f(x)$ above the x-axis.- For example,
$\int^{5}_{5} x^4dx = 0$
- For example,
- If b<a and
$f$ is integrable on [a,b], then$\int^{b}_{a} f(x)dx = - \int^{a}_b f(x)dx$ - For example,
$\int^{0}_{4} xdx = - \int^{4}_0 xdx = -\frac{x^2}{2}]_0^4 = -8$
- For example,
- If
$f$ is continous and non-negative on$[a,b]$ and if$c$ is a point between$a$ and$b$ , then the area under$y=f(x)$ over$[a,b]$ can be split into two parts,$a$ to$c$ and$c$ to$b$ . Thus,$\int^{b}_{a} f(x)dx = \int^{c}_a f(x)dx + \int^{b}_c f(x)dx$ - For example, evaluate
$\int{6}_{0} f(x)dx$ where$fx(x) = x^2$ when$x<=2$ and$f(x)= 3x-2$ when$x>=2$ . - To solve we say
$\int^{2}_{0} x^2dx + \int^{6}_2 3x-2dx = \frac{x^3}{3}]_0^2 + \frac{3x^2}{2}-2x]_2^6 = \frac{128}{3}$
- For example, evaluate
- U-substitution also works for definite integrals. Now, to solve these problems follow these steps:
- Start with problem is
$\int^{b}_{a} f(g(x))g'(x)dx$ form - Make a choice for
$u=g(x)$ - Make a choice for
$\frac{du}{dx} = g'(x)$ , then find$du$ which is$du= g'(x)dx$ . - Sub
$u=g(x)$ and$du=g'(x)dx$ into the problem, such that it is in the form$\int f(u)du$ - Evaluate the resultant integral from step 4, then sub
$g(x)$ back in for$u$
- Start with problem is
- For example, evaluate
$\int^{2}_{0} 2x(x^2+1)^3dx$ - First, we say
$u=(x^2+1)$ - Next, we say
$\frac{du}{dx} = 2x$ , so$du= 2xdx$ - Following substitution we get
$\int^{2}_{0} (u)^3du$ - After evaluating integral we get
$\frac{u^4}{4}]_0^2 = \frac{(x^2+1)^4}{4}]_0^2 = \frac{(2^2+1)^4}{4} - \frac{(0^2+1)^4}{4} = \frac{625}{4} - \frac{1}{4} = 156$
- First, we say
- If
$f$ is continous on a closed interval$[a,b]$ , there is a number between the minimum$(m)$ and maximum$(M)$ value of the function representing an arithmatic average. The mean value of$f$ on$[a,b]$ is defined as$f_{avg} = \frac{1}{b-a} ⋅ \int^{b}_{a} f(x)dx$ - For example, find the average value of the function
$f(x) = x^2$ on$[1,4]$ $f_{avg} = \frac{1}{4-1} ⋅\int^{4}_{1} x^2dx = \frac{1}{3} ⋅ \frac{x^3}{3}]_1^4 = \frac{1}{3} ⋅ 21= 7$
- If
$f$ and$g$ are continous functions where$f(x)>g(x)$ for all$x$ on$[a,b]$ , we can find the area bounded above by$f(x)$ , below by$g(x)$ , and on the sides by$x=a$ and$x=b$ with the following formula:$A = \int^{b}_{a} f(x)dx - \int^{b}_a g(x)dx = \int^{b}_a [f(x)-g(x)]$ .- For example... find the area bounded above by
$y=x+6$ , below by$y=x^2$ , and on the sides by$x=0$ and$x=2$ .$\int^{2}_{0} x+6dx - \int^{2}_0 x^2dx = \int^{2}_0 [x+6-x^2] dx = \frac{x^2}{2} + 6x - \frac{x^3}{3}]_0^2 = (\frac{2^2}{2} + 12 - \frac{2^3}{3}) - (\frac{0^2}{2} + 0 - \frac{0^3}{3}) = \frac{34}{3}$
- For example... find the area bounded above by
- The integral
$\int^{x}_1 \frac{1}{t} dt$ is called the natural logarithm of$x$ and is denoted by the symbol$ln$ . Thus,$ln(x) = \int^{x}_1 \frac{1}{t}dt$ - Since
$ln(x) = \int^{x}_1 \frac{1}{t}dt$ , we can say that$lnx$ is the antiderivative of$\frac{1}{x}$ and$lnx$ equals 0 when$x=1$ . Thus,$\frac{d}{dx}[lnx] = \frac{1}{x}$ .- For example,
$\frac{d}{dx}[ln2] = \frac{1}{2}$
- For example,
- For more complex derivatives of natural logaritms we can use the chain rule, which states
$\frac{d}{dx}[lnu] = \frac{d}{du}[lnu] ⋅ \frac{du}{dx} = \frac{1}{u} ⋅ \frac{d}{dx}[ ]$ - For example,
$\frac{d}{dx}[lnx^2] = \frac{d}{du}[lnx^2] ⋅ \frac{du}{dx} = \frac{1}{x^2} ⋅ \frac{d}{dx}[x^2] = \frac{1}{x^2} ⋅ 2x = \frac{2}{x}$
- For example,
- The same concepts apply for integration as well. For example, evaluate
$\int \frac{3x^2}{x^3+5}$ using$u$ -substitution- First, we can re-write
$\int \frac{3x^2}{x^3+5}$ as$\int \frac{1}{x^3+5} 3x^2dx$ - Then, we say
$u=x^3+5$ - Next, we say
$\frac{du}{dx} = 3x^2$ , so$du = 3x^2dx$ - Following substiution we get
$\int \frac{1}{u} dx$ - After evaluating the integral we get
$lnu+c$ and upon substituing$u$ back in the result is$ln|x^3+5|+c$
- First, we can re-write
- For any positive numbers
$a$ and$b$ and any rational numbenr$r$ ....$ln(ab) = ln(a) + lb(b)$ $ln(\frac{a}{b}) = ln(a)-ln(b)$ - $ln(a)^r = rln(a)
$ln(\sqrt{a}) = \frac{1}{2} ln(a)$ $ln(\frac{1}{b}) = -ln(b)$
-
$e^x$ is called the exponential function and has a special property where it can undo the natural logarithm and vice versa. Thus,$ln(e^x)=x$ and$e^{lnx} = x$ - For example,
$ln(e^2)=2$ and$e^{ln2}=2$
- For example,
- Additionally, if
$a$ is a positive real number and$k$ is any real number, then...$a^k = e^{kln(a)}$ $\frac{d}{dx}[a^x] = a^xln(a)$ $\frac{d}{dx}[e^x] = e^x$ $\frac{d}{dx}[a^u] = a^u ln(a)⋅\frac{du}{dx}[ ]$ $\frac{d}{dx}[e^u] = e^u ⋅\frac{du}{dx}[ ]$ $\int a^xdx = \frac{a^x}{ln(a)}+c$ $int\ e^xdx = e^x +c$
- For function of
$x$ and$y$ , we can find partial derivative$f_{x}(x_0, y_0)$ by holding$y$ constant and differentiating with respect to$x$ and$f_{y}(x_0, y_0)$ by holdong$x$ constant and differentiating with respect to$y$ . - For example, if
$f(x,y) = 2x^3y^2+2y+4x$ , find$f_{x}(1,2)$ and$f_{y}(1,2)$ - First,
$f_{x}(x,y) = 6x^2y^2+4$ , so$f_{x}(1,2) = 6(1)^2(2)^2+4=28$ - Second,
$f_{y}(x,y) = 4x^3y+2$ , so$f_{y}(1,2)= 4(1)^3(2)+2=10$
- First,
-
$f_{x}(x_0, y_0)$ is also denoted as$\frac{∂f}{∂x}$ and$f_{y}(x_0, y_0)$ is$\frac{∂f}{∂y}$ . If the independent variable$z=f(x,y)$ is introduced, we use the following symbols instead:$\frac{∂z}{∂x}$ and$\frac{∂z}{∂y}$ - For example,
$z=x^4sin(xy^3)$ . Find$\frac{∂z}{∂x}$ and$\frac{∂z}{∂y}$ -
$\frac{∂z}{∂x}$ =$\frac{∂}{∂x}[x^4sin(xy^3)] = x^4\frac{∂}{∂x}[sin(xy^3)] + sin(xy^3)\frac{∂}{∂x}[x^4]= x^4cos(xy^3)y^3+sin(xy^3)(4x^3)= x^4y^3cos(xy^3)+4x^3sin(xy^3)$ -
$\frac{∂z}{∂y}$ =$\frac{∂}{∂y}[x^4sin(xy^3)] = x^4\frac{∂}{∂y}[sin(xy^3)] + sin(xy^3)\frac{∂}{∂y}[x^4]= x^4cos(xy^3)3xy^2+sin(xy^3)(0)= 3x^5y^2cos(xy^3)$
-
- For example,
- A partial integral is the inverse of a partial derivative.
$\int^{b}_{a} f(x,y)dx$ is a partial integral with respect to$x$ and is evaluated by holding$y$ constant and integrating with repect to$x$ .- For example,
$\int^{1}_{0} xy^2dx = \frac{x^2 y^2}{2}]_0^1= \frac{1^2 y^2}{2} - \frac{0^2 y^2}{2} = \frac{y^2}{2}$
- For example,
- On the other hand,
$\int^{b}_{a} f(x,y)dy$ is a partial integral with repect to$y$ and is evaluated by holding$x$ constant and integrating with respect to$y$ .- For example,
$\int^{1}_{0} xy^2dy = \frac{x y^3}{3}]_0^1 = \frac{x 1^3}{3} - \frac{x 0^3}{3} = \frac{x}{3}$
- For example,
- Since the partial derivatives
$\frac{∂z}{∂x}$ and$\frac{∂z}{∂y}$ are functions of$x$ and$y$ , each can in turn have partial derivatives, giving rise to four possible second order partial derivaive:$f_{xx} = \frac{∂^2f}{∂x^2} = \frac{∂}{∂x}[\frac{∂f}{∂x}]$ $f_{yy} = \frac{∂^2f}{∂y^2} = \frac{∂}{∂y}[\frac{∂f}{∂y}]$ $f_{xy} = \frac{∂^2f}{∂y∂x} = \frac{∂}{∂y}[\frac{∂f}{∂x}]$ $f_{yx} = \frac{∂^2f}{∂x∂y} = \frac{∂}{∂x}[\frac{∂f}{∂y}]$
- For example, find the second order partial derivatives of
$f(x,y)= x^2y^3+x^4y$ $f_{xx}= \frac{∂}{∂x}[\frac{∂f}{∂x}] = \frac{∂}{∂x}[2xy^3+4x^3y]= 2y^3+12x^2y]$ $f_{yy}= \frac{∂}{∂y}[\frac{∂f}{∂y}] = \frac{∂}{∂y}[3x^2y^2+x^4]= 6x^2y$ $f_{xy}= \frac{∂}{∂y}[\frac{∂f}{∂x}] = \frac{∂}{∂y}[2xy^3+4x^3y]= 6xy^2 + 4x^3$ $f_{yx}= \frac{∂}{∂x}[\frac{∂f}{∂y}] = \frac{∂}{∂x}[3x^2y^2+x^4] = 6xy^2 + 4x^3$
- With successive differentiation, we can obtain the following third order partial derivatives...
$\frac{∂^3f}{∂x^3} = \frac{∂}{∂x}[\frac{∂^2f}{∂x^2}]$ $\frac{∂^3f}{∂y^3} = \frac{∂}{∂y}[\frac{∂^2f}{∂y^2}]$ $\frac{∂^3f}{∂y∂x^2} = \frac{∂}{∂y}[\frac{∂^2f}{∂x^2}]$ $\frac{∂^3f}{∂x∂y^2} = \frac{∂}{∂x}[\frac{∂^2f}{∂y^2}]$
- We can also continue differentiating to achieve higher order partial derivatives. For example, fourth order partial derivatives can take the form
$\frac{∂^4f}{∂x^2∂y^2} = \frac{∂}{∂y}[\frac{∂^3f}{∂y∂x^2}]$
- If
$x=x(t)$ and$y=y(t)$ are differentiable at$t$ , and if$z=f(x,y)$ is differentiable at$(x(t), y(t))$ , then$z=f(x(t),y(t))$ is differentiable at$t$ and is defined by$\frac{∂z}{∂t} = \frac{∂z}{∂x}⋅\frac{dx}{dt} + \frac{∂z}{∂y}⋅\frac{dy}{dt}$ - For example,
$z=x^2y, x=t^2, y=t^3$ . Find$\frac{∂z}{∂t}$ $\frac{∂z}{∂t} = \frac{∂}{∂x}[x^2y]\frac{d}{dt}[t^2]+\frac{∂}{∂y}[x^2y]\frac{d}{dt}[t^3] = (2xy)(2t)+(x^2)(3t^2) = (4xyt)+(3x^2t^2)= (4t^2t^3t)+(3(t^2)^2)t^2)= 4t^6 + 3t^6 = 7t^6$
- For example,
- In special cases where
$z=F(x,y)$ and$y$ is a differentiable function of$x$ , the chain rule says$\frac{dy}{dx} = - \frac{\frac{∂F}{∂x}}{\frac{∂F}{∂y}}$ - For example, find
$\frac{dy}{dx}$ given$x^3+y^2x$ $\frac{dy}{dx} = \frac{\frac{∂}{∂x}[x^3+y^2-3]}{\frac{∂}{∂y}[x^3+y^2-3]} = - \frac{3x^2+y^2}{2yx}$
- For example, find
- Now, consider a case where
$x$ and$y$ are each functions of two variables$u$ and$v$ themselves. If$x=x(u,v)$ and$y=y(u,v)$ and they have first order partial derivatives at$(u,v)$ and$z=f(x,y)$ is differentiable at$(x(u,v),y(u,v))$ , then$z=f(x(u,v),y(u,v))$ has a first order partial derivatives at$(u,v)$ , defined by the following formulas:$\frac{∂z}{∂u} = \frac{∂z}{∂x}⋅\frac{∂x}{∂u} + \frac{∂z}{∂y}⋅\frac{∂y}{∂u}$ $\frac{∂z}{∂v} = \frac{∂z}{∂x}⋅\frac{∂x}{∂v} + \frac{∂z}{∂y}⋅\frac{∂y}{∂v}$
- For example, find
$\frac{∂z}{∂u}$ and$\frac{∂z}{∂v}$ given$z=3xty^2$ ,$x=2u+v$ and$y=\frac{u}{v}$ $\frac{∂z}{∂u} = \frac{∂}{∂x}[3x+y^2]\frac{∂}{∂u}[2u+v] + \frac{∂}{∂y}[3x+y^2]\frac{∂}{∂u}[\frac{u}{v}] = (3)(2) + (2y)(\frac{1}{v}) = 6+\frac{2y}{v}$ $\frac{∂z}{∂v} = \frac{∂}{∂x}[3x+y^2]\frac{∂}{∂v}[2u+v] + \frac{∂}{∂y}[3x+y^2]\frac{∂}{∂v}[\frac{u}{v}] = (3)(1)+(2y)(\frac{u}{1}) = 3+2yu$
- A function of
$f(x,y,z)$ with three variables has three partial derivatives$f_{x}(x,y,z)$ ,$f_{y}(x,y,z)$ , and$f_{z}(x,y,z)$ . If a dependent variables$x=f(x,y,z)$ is used, the partial derivatives are denoted as$\frac{∂w}{∂x}$ ,$\frac{∂w}{∂y}$ , and$\frac{∂w}{∂z}$ .- For example, find partial derivatives for
$f(x,y,z)=x^3y^2z^4+2xy+z$ $f_{x} = 3x^2y^2z^4+2y$ $f_{y} = 2x^3yz^4+2x$ $f_{z} = 4x^3y^2z^3+1$
- For example, find partial derivatives for
- If
$x=x(t)$ ,$y=y(t)$ , and$z=z(t)$ are differentiable at$t$ and$w=f(x,y,z)$ is differentiable at$(x(t), y(t), z(t))$ , then$w=f(x(t),y(t),z(t))$ is differentiable at$t$ and$\frac{dw}{dt} = \frac{∂w}{∂x}⋅\frac{dx}{dt} + \frac{∂w}{∂y}⋅\frac{dy}{dt} + \frac{∂w}{∂z}⋅\frac{dz}{dt}$ - For example, if
$w=x^3y^2z$ ,$x=t^2$ ,$y=t^3$ , and$z=t^4$ , find$\frac{dw}{dt}$ $\frac{dw}{dt} = \frac{∂}{∂x}[x^3y^2z]\frac{d}{dt}[t^2] + \frac{∂}{∂y}[x^3y^2z]\frac{d}{dt}[t^3] + \frac{∂}{∂z}[x^3y^2z]\frac{d}{dt}[t^4] = (3x^2y^2z)(2t) + (2x^3yz)(3t^2) + (x^3y^2)(4t^3) = (6x^2y^2zt) + (6x^3yzt^2) + (4x^3y^2t^3) = (6t^15) + (6t^15) + (4t^15) = 16t^15$
- For example, if
- The following are called iterated or repeated integrals:
$\int^{d}_c [\int^{b}_a f(x,y)dx]dy$ $\int^{d}_c [\int^{b}_a f(x,y)dy]dx$
- Below I'll demonstrate how to evaluate the double integral
$\int^{3}_0 [\int^{2}_1 (1+8xy)dy]dx$ $\int^{3}_0 [\int^{2}_1 (1+8xy)dy]dx =\int^{3}_0 [1y+\frac{8xy^2}{2}]_1^2 dx = \int^{3}_0 [(2+16x)-(1+4x)] dx = \int^{3}_0 1+12xdx = 1x + \frac{12x^2}{2}]_0^3 = 57$ - Notably, the double integral
$\int^{2}_1 [\int^{3}_0 (1+8xy)dx]dy$ would produce the same results since we are working in a rectangle defined by inequalities a<=x<=b, c<=y<=d, thus$\int \int f(x,y)dA = \int^{d}_c \int^{b}_a f(x,y)dxdy = \int^{b}_a \int^{d}_c f(x,y)dydx$
- Double integrals over non-rectangular regions can fit into one of two categories, type I or type II, each with different rules: **see page 119 in notebook
- Howard Anton's "Calculus With Analytic Geometry". I personally used a 2nd edition copy from the 1980's, but there are newer additions available on Amazon.