-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInterpreter.c
1679 lines (1480 loc) · 54.7 KB
/
Interpreter.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -----------------------------------------------------------------------------
* Bytecode interpreter
*
* Copyright (c) The GHC Team, 1994-2002.
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsAPI.h"
#include "rts/Bytecodes.h"
// internal headers
#include "sm/Storage.h"
#include "sm/Sanity.h"
#include "RtsUtils.h"
#include "Schedule.h"
#include "Updates.h"
#include "Prelude.h"
#include "Stable.h"
#include "Printer.h"
#include "Profiling.h"
#include "Disassembler.h"
#include "Interpreter.h"
#include "ThreadPaused.h"
#include "Threads.h"
#include <string.h> /* for memcpy */
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
// When building the RTS in the non-dyn way on Windows, we don't
// want declspec(__dllimport__) on the front of function prototypes
// from libffi.
#if defined(mingw32_HOST_OS)
#if (defined(i386_HOST_ARCH) && !defined(__PIC__)) || defined(x86_64_HOST_ARCH)
# define LIBFFI_NOT_DLL
#endif
#endif
#include "ffi.h"
/* --------------------------------------------------------------------------
* The bytecode interpreter
* ------------------------------------------------------------------------*/
/* Gather stats about entry, opcode, opcode-pair frequencies. For
tuning the interpreter. */
/* #define INTERP_STATS */
/* Sp points to the lowest live word on the stack. */
#define BCO_NEXT instrs[bciPtr++]
#define BCO_NEXT_32 (bciPtr += 2)
#define BCO_READ_NEXT_32 (BCO_NEXT_32, (((StgWord) instrs[bciPtr-2]) << 16) \
+ ( (StgWord) instrs[bciPtr-1]))
#define BCO_NEXT_64 (bciPtr += 4)
#define BCO_READ_NEXT_64 (BCO_NEXT_64, (((StgWord) instrs[bciPtr-4]) << 48) \
+ (((StgWord) instrs[bciPtr-3]) << 32) \
+ (((StgWord) instrs[bciPtr-2]) << 16) \
+ ( (StgWord) instrs[bciPtr-1]))
#if WORD_SIZE_IN_BITS == 32
#define BCO_NEXT_WORD BCO_NEXT_32
#define BCO_READ_NEXT_WORD BCO_READ_NEXT_32
#elif WORD_SIZE_IN_BITS == 64
#define BCO_NEXT_WORD BCO_NEXT_64
#define BCO_READ_NEXT_WORD BCO_READ_NEXT_64
#else
#error Cannot cope with WORD_SIZE_IN_BITS being nether 32 nor 64
#endif
#define BCO_GET_LARGE_ARG ((bci & bci_FLAG_LARGE_ARGS) ? BCO_READ_NEXT_WORD : BCO_NEXT)
#define BCO_PTR(n) (W_)ptrs[n]
#define BCO_LIT(n) literals[n]
#define LOAD_STACK_POINTERS \
Sp = cap->r.rCurrentTSO->stackobj->sp; \
/* We don't change this ... */ \
SpLim = tso_SpLim(cap->r.rCurrentTSO);
#define SAVE_STACK_POINTERS \
cap->r.rCurrentTSO->stackobj->sp = Sp;
#ifdef PROFILING
#define LOAD_THREAD_STATE() \
LOAD_STACK_POINTERS \
cap->r.rCCCS = cap->r.rCurrentTSO->prof.cccs;
#else
#define LOAD_THREAD_STATE() \
LOAD_STACK_POINTERS
#endif
#ifdef PROFILING
#define SAVE_THREAD_STATE() \
SAVE_STACK_POINTERS \
cap->r.rCurrentTSO->prof.cccs = cap->r.rCCCS;
#else
#define SAVE_THREAD_STATE() \
SAVE_STACK_POINTERS
#endif
// Note [Not true: ASSERT(Sp > SpLim)]
//
// SpLim has some headroom (RESERVED_STACK_WORDS) to allow for saving
// any necessary state on the stack when returning to the scheduler
// when a stack check fails.. The upshot of this is that Sp could be
// less than SpLim both when leaving to return to the scheduler.
#define RETURN_TO_SCHEDULER(todo,retcode) \
SAVE_THREAD_STATE(); \
cap->r.rCurrentTSO->what_next = (todo); \
threadPaused(cap,cap->r.rCurrentTSO); \
cap->r.rRet = (retcode); \
return cap;
#define RETURN_TO_SCHEDULER_NO_PAUSE(todo,retcode) \
SAVE_THREAD_STATE(); \
cap->r.rCurrentTSO->what_next = (todo); \
cap->r.rRet = (retcode); \
return cap;
STATIC_INLINE StgPtr
allocate_NONUPD (Capability *cap, int n_words)
{
return allocate(cap, stg_max(sizeofW(StgHeader)+MIN_PAYLOAD_SIZE, n_words));
}
int rts_stop_next_breakpoint = 0;
int rts_stop_on_exception = 0;
#ifdef INTERP_STATS
/* Hacky stats, for tuning the interpreter ... */
int it_unknown_entries[N_CLOSURE_TYPES];
int it_total_unknown_entries;
int it_total_entries;
int it_retto_BCO;
int it_retto_UPDATE;
int it_retto_other;
int it_slides;
int it_insns;
int it_BCO_entries;
int it_ofreq[27];
int it_oofreq[27][27];
int it_lastopc;
#define INTERP_TICK(n) (n)++
void interp_startup ( void )
{
int i, j;
it_retto_BCO = it_retto_UPDATE = it_retto_other = 0;
it_total_entries = it_total_unknown_entries = 0;
for (i = 0; i < N_CLOSURE_TYPES; i++)
it_unknown_entries[i] = 0;
it_slides = it_insns = it_BCO_entries = 0;
for (i = 0; i < 27; i++) it_ofreq[i] = 0;
for (i = 0; i < 27; i++)
for (j = 0; j < 27; j++)
it_oofreq[i][j] = 0;
it_lastopc = 0;
}
void interp_shutdown ( void )
{
int i, j, k, o_max, i_max, j_max;
debugBelch("%d constrs entered -> (%d BCO, %d UPD, %d ??? )\n",
it_retto_BCO + it_retto_UPDATE + it_retto_other,
it_retto_BCO, it_retto_UPDATE, it_retto_other );
debugBelch("%d total entries, %d unknown entries \n",
it_total_entries, it_total_unknown_entries);
for (i = 0; i < N_CLOSURE_TYPES; i++) {
if (it_unknown_entries[i] == 0) continue;
debugBelch(" type %2d: unknown entries (%4.1f%%) == %d\n",
i, 100.0 * ((double)it_unknown_entries[i]) /
((double)it_total_unknown_entries),
it_unknown_entries[i]);
}
debugBelch("%d insns, %d slides, %d BCO_entries\n",
it_insns, it_slides, it_BCO_entries);
for (i = 0; i < 27; i++)
debugBelch("opcode %2d got %d\n", i, it_ofreq[i] );
for (k = 1; k < 20; k++) {
o_max = 0;
i_max = j_max = 0;
for (i = 0; i < 27; i++) {
for (j = 0; j < 27; j++) {
if (it_oofreq[i][j] > o_max) {
o_max = it_oofreq[i][j];
i_max = i; j_max = j;
}
}
}
debugBelch("%d: count (%4.1f%%) %6d is %d then %d\n",
k, ((double)o_max) * 100.0 / ((double)it_insns), o_max,
i_max, j_max );
it_oofreq[i_max][j_max] = 0;
}
}
#else // !INTERP_STATS
#define INTERP_TICK(n) /* nothing */
#endif
static StgWord app_ptrs_itbl[] = {
(W_)&stg_ap_p_info,
(W_)&stg_ap_pp_info,
(W_)&stg_ap_ppp_info,
(W_)&stg_ap_pppp_info,
(W_)&stg_ap_ppppp_info,
(W_)&stg_ap_pppppp_info,
};
HsStablePtr rts_breakpoint_io_action; // points to the IO action which is executed on a breakpoint
// it is set in main/GHC.hs:runStmt
Capability *
interpretBCO (Capability* cap)
{
// Use of register here is primarily to make it clear to compilers
// that these entities are non-aliasable.
register StgPtr Sp; // local state -- stack pointer
register StgPtr SpLim; // local state -- stack lim pointer
register StgClosure *tagged_obj = 0, *obj;
uint32_t n, m;
LOAD_THREAD_STATE();
cap->r.rHpLim = (P_)1; // HpLim is the context-switch flag; when it
// goes to zero we must return to the scheduler.
IF_DEBUG(interpreter,
debugBelch(
"\n---------------------------------------------------------------\n");
debugBelch("Entering the interpreter, Sp = %p\n", Sp);
#ifdef PROFILING
fprintCCS(stderr, cap->r.rCCCS);
debugBelch("\n");
#endif
debugBelch("\n");
printStackChunk(Sp,cap->r.rCurrentTSO->stackobj->stack+cap->r.rCurrentTSO->stackobj->stack_size);
debugBelch("\n\n");
);
// ------------------------------------------------------------------------
// Case 1:
//
// We have a closure to evaluate. Stack looks like:
//
// | XXXX_info |
// +---------------+
// Sp | -------------------> closure
// +---------------+
// | stg_enter |
// +---------------+
//
if (Sp[0] == (W_)&stg_enter_info) {
Sp++;
goto eval;
}
// ------------------------------------------------------------------------
// Case 2:
//
// We have a BCO application to perform. Stack looks like:
//
// | .... |
// +---------------+
// | arg1 |
// +---------------+
// | BCO |
// +---------------+
// Sp | RET_BCO |
// +---------------+
//
else if (Sp[0] == (W_)&stg_apply_interp_info) {
obj = UNTAG_CLOSURE((StgClosure *)Sp[1]);
Sp += 2;
goto run_BCO_fun;
}
// ------------------------------------------------------------------------
// Case 3:
//
// We have an unboxed value to return. See comment before
// do_return_unboxed, below.
//
else {
goto do_return_unboxed;
}
// Evaluate the object on top of the stack.
eval:
tagged_obj = (StgClosure*)Sp[0]; Sp++;
eval_obj:
obj = UNTAG_CLOSURE(tagged_obj);
INTERP_TICK(it_total_evals);
IF_DEBUG(interpreter,
debugBelch(
"\n---------------------------------------------------------------\n");
debugBelch("Evaluating: "); printObj(obj);
debugBelch("Sp = %p\n", Sp);
#ifdef PROFILING
fprintCCS(stderr, cap->r.rCCCS);
debugBelch("\n");
#endif
debugBelch("\n" );
printStackChunk(Sp,cap->r.rCurrentTSO->stackobj->stack+cap->r.rCurrentTSO->stackobj->stack_size);
debugBelch("\n\n");
);
// IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));
IF_DEBUG(sanity,checkStackFrame(Sp));
switch ( get_itbl(obj)->type ) {
case IND:
case IND_STATIC:
{
tagged_obj = ((StgInd*)obj)->indirectee;
goto eval_obj;
}
case CONSTR:
case CONSTR_1_0:
case CONSTR_0_1:
case CONSTR_2_0:
case CONSTR_1_1:
case CONSTR_0_2:
case CONSTR_STATIC:
case CONSTR_NOCAF_STATIC:
case FUN:
case FUN_1_0:
case FUN_0_1:
case FUN_2_0:
case FUN_1_1:
case FUN_0_2:
case FUN_STATIC:
case PAP:
// already in WHNF
break;
case BCO:
{
ASSERT(((StgBCO *)obj)->arity > 0);
break;
}
case AP: /* Copied from stg_AP_entry. */
{
uint32_t i, words;
StgAP *ap;
ap = (StgAP*)obj;
words = ap->n_args;
// Stack check
if (Sp - (words+sizeofW(StgUpdateFrame)+2) < SpLim) {
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
}
#ifdef PROFILING
// restore the CCCS after evaluating the AP
Sp -= 2;
Sp[1] = (W_)cap->r.rCCCS;
Sp[0] = (W_)&stg_restore_cccs_info;
#endif
Sp -= sizeofW(StgUpdateFrame);
{
StgUpdateFrame *__frame;
__frame = (StgUpdateFrame *)Sp;
SET_INFO((StgClosure *)__frame, (StgInfoTable *)&stg_upd_frame_info);
__frame->updatee = (StgClosure *)(ap);
}
ENTER_CCS_THUNK(cap,ap);
/* Reload the stack */
Sp -= words;
for (i=0; i < words; i++) {
Sp[i] = (W_)ap->payload[i];
}
obj = UNTAG_CLOSURE((StgClosure*)ap->fun);
ASSERT(get_itbl(obj)->type == BCO);
goto run_BCO_fun;
}
default:
#ifdef INTERP_STATS
{
int j;
j = get_itbl(obj)->type;
ASSERT(j >= 0 && j < N_CLOSURE_TYPES);
it_unknown_entries[j]++;
it_total_unknown_entries++;
}
#endif
{
// Can't handle this object; yield to scheduler
IF_DEBUG(interpreter,
debugBelch("evaluating unknown closure -- yielding to sched\n");
printObj(obj);
);
#ifdef PROFILING
// restore the CCCS after evaluating the closure
Sp -= 2;
Sp[1] = (W_)cap->r.rCCCS;
Sp[0] = (W_)&stg_restore_cccs_info;
#endif
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
}
// ------------------------------------------------------------------------
// We now have an evaluated object (tagged_obj). The next thing to
// do is return it to the stack frame on top of the stack.
do_return:
obj = UNTAG_CLOSURE(tagged_obj);
ASSERT(closure_HNF(obj));
IF_DEBUG(interpreter,
debugBelch(
"\n---------------------------------------------------------------\n");
debugBelch("Returning: "); printObj(obj);
debugBelch("Sp = %p\n", Sp);
#ifdef PROFILING
fprintCCS(stderr, cap->r.rCCCS);
debugBelch("\n");
#endif
debugBelch("\n");
printStackChunk(Sp,cap->r.rCurrentTSO->stackobj->stack+cap->r.rCurrentTSO->stackobj->stack_size);
debugBelch("\n\n");
);
IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stackobj->stack+cap->r.rCurrentTSO->stackobj->stack_size));
switch (get_itbl((StgClosure *)Sp)->type) {
case RET_SMALL: {
const StgInfoTable *info;
// NOTE: not using get_itbl().
info = ((StgClosure *)Sp)->header.info;
if (info == (StgInfoTable *)&stg_restore_cccs_info) {
cap->r.rCCCS = (CostCentreStack*)Sp[1];
Sp += 2;
goto do_return;
}
if (info == (StgInfoTable *)&stg_ap_v_info) {
n = 1; m = 0; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_f_info) {
n = 1; m = 1; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_d_info) {
n = 1; m = sizeofW(StgDouble); goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_l_info) {
n = 1; m = sizeofW(StgInt64); goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_n_info) {
n = 1; m = 1; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_p_info) {
n = 1; m = 1; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_pp_info) {
n = 2; m = 2; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_ppp_info) {
n = 3; m = 3; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_pppp_info) {
n = 4; m = 4; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_ppppp_info) {
n = 5; m = 5; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_pppppp_info) {
n = 6; m = 6; goto do_apply;
}
goto do_return_unrecognised;
}
case UPDATE_FRAME:
// Returning to an update frame: do the update, pop the update
// frame, and continue with the next stack frame.
//
// NB. we must update with the *tagged* pointer. Some tags
// are not optional, and if we omit the tag bits when updating
// then bad things can happen (albeit very rarely). See #1925.
// What happened was an indirection was created with an
// untagged pointer, and this untagged pointer was propagated
// to a PAP by the GC, violating the invariant that PAPs
// always contain a tagged pointer to the function.
INTERP_TICK(it_retto_UPDATE);
updateThunk(cap, cap->r.rCurrentTSO,
((StgUpdateFrame *)Sp)->updatee, tagged_obj);
Sp += sizeofW(StgUpdateFrame);
goto do_return;
case RET_BCO:
// Returning to an interpreted continuation: put the object on
// the stack, and start executing the BCO.
INTERP_TICK(it_retto_BCO);
Sp--;
Sp[0] = (W_)obj;
// NB. return the untagged object; the bytecode expects it to
// be untagged. XXX this doesn't seem right.
obj = (StgClosure*)Sp[2];
ASSERT(get_itbl(obj)->type == BCO);
goto run_BCO_return;
default:
do_return_unrecognised:
{
// Can't handle this return address; yield to scheduler
INTERP_TICK(it_retto_other);
IF_DEBUG(interpreter,
debugBelch("returning to unknown frame -- yielding to sched\n");
printStackChunk(Sp,cap->r.rCurrentTSO->stackobj->stack+cap->r.rCurrentTSO->stackobj->stack_size);
);
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
}
// -------------------------------------------------------------------------
// Returning an unboxed value. The stack looks like this:
//
// | .... |
// +---------------+
// | fv2 |
// +---------------+
// | fv1 |
// +---------------+
// | BCO |
// +---------------+
// | stg_ctoi_ret_ |
// +---------------+
// | retval |
// +---------------+
// | XXXX_info |
// +---------------+
//
// where XXXX_info is one of the stg_ret_*_info family.
//
// We're only interested in the case when the real return address
// is a BCO; otherwise we'll return to the scheduler.
do_return_unboxed:
{
int offset;
ASSERT( Sp[0] == (W_)&stg_ret_v_info
|| Sp[0] == (W_)&stg_ret_p_info
|| Sp[0] == (W_)&stg_ret_n_info
|| Sp[0] == (W_)&stg_ret_f_info
|| Sp[0] == (W_)&stg_ret_d_info
|| Sp[0] == (W_)&stg_ret_l_info
);
IF_DEBUG(interpreter,
debugBelch(
"\n---------------------------------------------------------------\n");
debugBelch("Returning: "); printObj(obj);
debugBelch("Sp = %p\n", Sp);
#ifdef PROFILING
fprintCCS(stderr, cap->r.rCCCS);
debugBelch("\n");
#endif
debugBelch("\n");
printStackChunk(Sp,cap->r.rCurrentTSO->stackobj->stack+cap->r.rCurrentTSO->stackobj->stack_size);
debugBelch("\n\n");
);
// get the offset of the stg_ctoi_ret_XXX itbl
offset = stack_frame_sizeW((StgClosure *)Sp);
switch (get_itbl((StgClosure*)((StgPtr)Sp+offset))->type) {
case RET_BCO:
// Returning to an interpreted continuation: put the object on
// the stack, and start executing the BCO.
INTERP_TICK(it_retto_BCO);
obj = (StgClosure*)Sp[offset+1];
ASSERT(get_itbl(obj)->type == BCO);
goto run_BCO_return_unboxed;
default:
{
// Can't handle this return address; yield to scheduler
INTERP_TICK(it_retto_other);
IF_DEBUG(interpreter,
debugBelch("returning to unknown frame -- yielding to sched\n");
printStackChunk(Sp,cap->r.rCurrentTSO->stackobj->stack+cap->r.rCurrentTSO->stackobj->stack_size);
);
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
}
}
// not reached.
// -------------------------------------------------------------------------
// Application...
do_apply:
ASSERT(obj == UNTAG_CLOSURE(tagged_obj));
// we have a function to apply (obj), and n arguments taking up m
// words on the stack. The info table (stg_ap_pp_info or whatever)
// is on top of the arguments on the stack.
{
switch (get_itbl(obj)->type) {
case PAP: {
StgPAP *pap;
uint32_t i, arity;
pap = (StgPAP *)obj;
// we only cope with PAPs whose function is a BCO
if (get_itbl(UNTAG_CLOSURE(pap->fun))->type != BCO) {
goto defer_apply_to_sched;
}
// Stack check: we're about to unpack the PAP onto the
// stack. The (+1) is for the (arity < n) case, where we
// also need space for an extra info pointer.
if (Sp - (pap->n_args + 1) < SpLim) {
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
}
Sp++;
arity = pap->arity;
ASSERT(arity > 0);
if (arity < n) {
// n must be greater than 1, and the only kinds of
// application we support with more than one argument
// are all pointers...
//
// Shuffle the args for this function down, and put
// the appropriate info table in the gap.
for (i = 0; i < arity; i++) {
Sp[(int)i-1] = Sp[i];
// ^^^^^ careful, i-1 might be negative, but i is unsigned
}
Sp[arity-1] = app_ptrs_itbl[n-arity-1];
Sp--;
// unpack the PAP's arguments onto the stack
Sp -= pap->n_args;
for (i = 0; i < pap->n_args; i++) {
Sp[i] = (W_)pap->payload[i];
}
obj = UNTAG_CLOSURE(pap->fun);
#ifdef PROFILING
enterFunCCS(&cap->r, pap->header.prof.ccs);
#endif
goto run_BCO_fun;
}
else if (arity == n) {
Sp -= pap->n_args;
for (i = 0; i < pap->n_args; i++) {
Sp[i] = (W_)pap->payload[i];
}
obj = UNTAG_CLOSURE(pap->fun);
#ifdef PROFILING
enterFunCCS(&cap->r, pap->header.prof.ccs);
#endif
goto run_BCO_fun;
}
else /* arity > n */ {
// build a new PAP and return it.
StgPAP *new_pap;
new_pap = (StgPAP *)allocate(cap, PAP_sizeW(pap->n_args + m));
SET_HDR(new_pap,&stg_PAP_info,cap->r.rCCCS);
new_pap->arity = pap->arity - n;
new_pap->n_args = pap->n_args + m;
new_pap->fun = pap->fun;
for (i = 0; i < pap->n_args; i++) {
new_pap->payload[i] = pap->payload[i];
}
for (i = 0; i < m; i++) {
new_pap->payload[pap->n_args + i] = (StgClosure *)Sp[i];
}
tagged_obj = (StgClosure *)new_pap;
Sp += m;
goto do_return;
}
}
case BCO: {
uint32_t arity, i;
Sp++;
arity = ((StgBCO *)obj)->arity;
ASSERT(arity > 0);
if (arity < n) {
// n must be greater than 1, and the only kinds of
// application we support with more than one argument
// are all pointers...
//
// Shuffle the args for this function down, and put
// the appropriate info table in the gap.
for (i = 0; i < arity; i++) {
Sp[(int)i-1] = Sp[i];
// ^^^^^ careful, i-1 might be negative, but i is unsigned
}
Sp[arity-1] = app_ptrs_itbl[n-arity-1];
Sp--;
goto run_BCO_fun;
}
else if (arity == n) {
goto run_BCO_fun;
}
else /* arity > n */ {
// build a PAP and return it.
StgPAP *pap;
uint32_t i;
pap = (StgPAP *)allocate(cap, PAP_sizeW(m));
SET_HDR(pap, &stg_PAP_info,cap->r.rCCCS);
pap->arity = arity - n;
pap->fun = obj;
pap->n_args = m;
for (i = 0; i < m; i++) {
pap->payload[i] = (StgClosure *)Sp[i];
}
tagged_obj = (StgClosure *)pap;
Sp += m;
goto do_return;
}
}
// No point in us applying machine-code functions
default:
defer_apply_to_sched:
IF_DEBUG(interpreter,
debugBelch("Cannot apply compiled function; yielding to scheduler\n"));
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
// ------------------------------------------------------------------------
// Ok, we now have a bco (obj), and its arguments are all on the
// stack. We can start executing the byte codes.
//
// The stack is in one of two states. First, if this BCO is a
// function:
//
// | .... |
// +---------------+
// | arg2 |
// +---------------+
// | arg1 |
// +---------------+
//
// Second, if this BCO is a continuation:
//
// | .... |
// +---------------+
// | fv2 |
// +---------------+
// | fv1 |
// +---------------+
// | BCO |
// +---------------+
// | stg_ctoi_ret_ |
// +---------------+
// | retval |
// +---------------+
//
// where retval is the value being returned to this continuation.
// In the event of a stack check, heap check, or context switch,
// we need to leave the stack in a sane state so the garbage
// collector can find all the pointers.
//
// (1) BCO is a function: the BCO's bitmap describes the
// pointerhood of the arguments.
//
// (2) BCO is a continuation: BCO's bitmap describes the
// pointerhood of the free variables.
//
// Sadly we have three different kinds of stack/heap/cswitch check
// to do:
run_BCO_return:
// Heap check
if (doYouWantToGC(cap)) {
Sp--; Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
}
// Stack checks aren't necessary at return points, the stack use
// is aggregated into the enclosing function entry point.
goto run_BCO;
run_BCO_return_unboxed:
// Heap check
if (doYouWantToGC(cap)) {
RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
}
// Stack checks aren't necessary at return points, the stack use
// is aggregated into the enclosing function entry point.
goto run_BCO;
run_BCO_fun:
IF_DEBUG(sanity,
Sp -= 2;
Sp[1] = (W_)obj;
Sp[0] = (W_)&stg_apply_interp_info;
checkStackChunk(Sp,SpLim);
Sp += 2;
);
// Heap check
if (doYouWantToGC(cap)) {
Sp -= 2;
Sp[1] = (W_)obj;
Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
}
// Stack check
if (Sp - INTERP_STACK_CHECK_THRESH < SpLim) {
Sp -= 2;
Sp[1] = (W_)obj;
Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
}
goto run_BCO;
// Now, actually interpret the BCO... (no returning to the
// scheduler again until the stack is in an orderly state).
run_BCO:
INTERP_TICK(it_BCO_entries);
{
register int bciPtr = 0; /* instruction pointer */
register StgWord16 bci;
register StgBCO* bco = (StgBCO*)obj;
register StgWord16* instrs = (StgWord16*)(bco->instrs->payload);
register StgWord* literals = (StgWord*)(&bco->literals->payload[0]);
register StgPtr* ptrs = (StgPtr*)(&bco->ptrs->payload[0]);
#ifdef DEBUG
int bcoSize;
bcoSize = bco->instrs->bytes / sizeof(StgWord16);
#endif
IF_DEBUG(interpreter,debugBelch("bcoSize = %d\n", bcoSize));
#ifdef INTERP_STATS
it_lastopc = 0; /* no opcode */
#endif
nextInsn:
ASSERT(bciPtr < bcoSize);
IF_DEBUG(interpreter,
//if (do_print_stack) {
//debugBelch("\n-- BEGIN stack\n");
//printStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
//debugBelch("-- END stack\n\n");
//}
debugBelch("Sp = %p pc = %-4d ", Sp, bciPtr);
disInstr(bco,bciPtr);
if (0) { int i;
debugBelch("\n");
for (i = 8; i >= 0; i--) {
debugBelch("%d %p\n", i, (StgPtr)(*(Sp+i)));
}
debugBelch("\n");
}
//if (do_print_stack) checkStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
);
INTERP_TICK(it_insns);
#ifdef INTERP_STATS
ASSERT( (int)instrs[bciPtr] >= 0 && (int)instrs[bciPtr] < 27 );
it_ofreq[ (int)instrs[bciPtr] ] ++;
it_oofreq[ it_lastopc ][ (int)instrs[bciPtr] ] ++;
it_lastopc = (int)instrs[bciPtr];
#endif
bci = BCO_NEXT;
/* We use the high 8 bits for flags, only the highest of which is
* currently allocated */
ASSERT((bci & 0xFF00) == (bci & 0x8000));
switch (bci & 0xFF) {
/* check for a breakpoint on the beginning of a let binding */
case bci_BRK_FUN:
{
int arg1_brk_array, arg2_array_index, arg3_module_uniq;
#ifdef PROFILING
int arg4_cc;
#endif
StgArrBytes *breakPoints;
int returning_from_break;
// the io action to run at a breakpoint
StgClosure *ioAction;
// a closure to save the top stack frame on the heap
StgAP_STACK *new_aps;
int i;
int size_words;
arg1_brk_array = BCO_GET_LARGE_ARG;
arg2_array_index = BCO_NEXT;
arg3_module_uniq = BCO_GET_LARGE_ARG;
#ifdef PROFILING
arg4_cc = BCO_GET_LARGE_ARG;
#else
BCO_GET_LARGE_ARG;
#endif
// check if we are returning from a breakpoint - this info
// is stored in the flags field of the current TSO. If true,
// then don't break this time around.
returning_from_break =
cap->r.rCurrentTSO->flags & TSO_STOPPED_ON_BREAKPOINT;
#ifdef PROFILING
cap->r.rCCCS = pushCostCentre(cap->r.rCCCS,
(CostCentre*)BCO_LIT(arg4_cc));
#endif
// if we are returning from a break then skip this section
// and continue executing
if (!returning_from_break)
{
breakPoints = (StgArrBytes *) BCO_PTR(arg1_brk_array);
// stop the current thread if either the
// "rts_stop_next_breakpoint" flag is true OR if the
// breakpoint flag for this particular expression is
// true
if (rts_stop_next_breakpoint == rtsTrue ||
((StgWord8*)breakPoints->payload)[arg2_array_index]
== rtsTrue)
{
// make sure we don't automatically stop at the
// next breakpoint
rts_stop_next_breakpoint = rtsFalse;
// allocate memory for a new AP_STACK, enough to
// store the top stack frame plus an
// stg_apply_interp_info pointer and a pointer to
// the BCO
size_words = BCO_BITMAP_SIZE(obj) + 2;
new_aps = (StgAP_STACK *) allocate(cap, AP_STACK_sizeW(size_words));
SET_HDR(new_aps,&stg_AP_STACK_info,cap->r.rCCCS);
new_aps->size = size_words;
new_aps->fun = &stg_dummy_ret_closure;
// fill in the payload of the AP_STACK
new_aps->payload[0] = (StgClosure *)&stg_apply_interp_info;
new_aps->payload[1] = (StgClosure *)obj;
// copy the contents of the top stack frame into the AP_STACK
for (i = 2; i < size_words; i++)
{