-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPrimOps.cmm
2583 lines (2095 loc) · 76.5 KB
/
PrimOps.cmm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- tab-width: 8 -*- */
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2012
*
* Out-of-line primitive operations
*
* This file contains the implementations of all the primitive
* operations ("primops") which are not expanded inline. See
* ghc/compiler/prelude/primops.txt.pp for a list of all the primops;
* this file contains code for most of those with the attribute
* out_of_line=True.
*
* Entry convention: the entry convention for a primop is the
* NativeNodeCall convention, and the return convention is
* NativeReturn. (see compiler/cmm/CmmCallConv.hs)
*
* This file is written in a subset of C--, extended with various
* features specific to GHC. It is compiled by GHC directly. For the
* syntax of .cmm files, see the parser in ghc/compiler/cmm/CmmParse.y.
*
* ---------------------------------------------------------------------------*/
#include "Cmm.h"
#include "MachDeps.h"
#include "SMPClosureOps.h"
#ifdef __PIC__
import pthread_mutex_lock;
import pthread_mutex_unlock;
#endif
import CLOSURE base_ControlziExceptionziBase_nestedAtomically_closure;
import EnterCriticalSection;
import LeaveCriticalSection;
import CLOSURE ghczmprim_GHCziTypes_False_closure;
#if defined(USE_MINIINTERPRETER) || !defined(mingw32_HOST_OS)
import CLOSURE sm_mutex;
#endif
#ifdef PROFILING
import CLOSURE CCS_MAIN;
#endif
/*-----------------------------------------------------------------------------
Array Primitives
Basically just new*Array - the others are all inline macros.
The slow entry point is for returning from a heap check, the saved
size argument must be re-loaded from the stack.
-------------------------------------------------------------------------- */
/* for objects that are *less* than the size of a word, make sure we
* round up to the nearest word for the size of the array.
*/
stg_newByteArrayzh ( W_ n )
{
W_ words, payload_words;
gcptr p;
MAYBE_GC_N(stg_newByteArrayzh, n);
payload_words = ROUNDUP_BYTES_TO_WDS(n);
words = BYTES_TO_WDS(SIZEOF_StgArrBytes) + payload_words;
("ptr" p) = ccall allocate(MyCapability() "ptr",words);
TICK_ALLOC_PRIM(SIZEOF_StgArrBytes,WDS(payload_words),0);
SET_HDR(p, stg_ARR_WORDS_info, CCCS);
StgArrBytes_bytes(p) = n;
return (p);
}
#define BA_ALIGN 16
#define BA_MASK (BA_ALIGN-1)
stg_newPinnedByteArrayzh ( W_ n )
{
W_ words, bytes, payload_words;
gcptr p;
MAYBE_GC_N(stg_newPinnedByteArrayzh, n);
bytes = n;
/* payload_words is what we will tell the profiler we had to allocate */
payload_words = ROUNDUP_BYTES_TO_WDS(bytes);
/* When we actually allocate memory, we need to allow space for the
header: */
bytes = bytes + SIZEOF_StgArrBytes;
/* And we want to align to BA_ALIGN bytes, so we need to allow space
to shift up to BA_ALIGN - 1 bytes: */
bytes = bytes + BA_ALIGN - 1;
/* Now we convert to a number of words: */
words = ROUNDUP_BYTES_TO_WDS(bytes);
("ptr" p) = ccall allocatePinned(MyCapability() "ptr", words);
TICK_ALLOC_PRIM(SIZEOF_StgArrBytes,WDS(payload_words),0);
/* Now we need to move p forward so that the payload is aligned
to BA_ALIGN bytes: */
p = p + ((-p - SIZEOF_StgArrBytes) & BA_MASK);
SET_HDR(p, stg_ARR_WORDS_info, CCCS);
StgArrBytes_bytes(p) = n;
return (p);
}
stg_newAlignedPinnedByteArrayzh ( W_ n, W_ alignment )
{
W_ words, bytes, payload_words;
gcptr p;
again: MAYBE_GC(again);
/* we always supply at least word-aligned memory, so there's no
need to allow extra space for alignment if the requirement is less
than a word. This also prevents mischief with alignment == 0. */
if (alignment <= SIZEOF_W) { alignment = 1; }
bytes = n;
/* payload_words is what we will tell the profiler we had to allocate */
payload_words = ROUNDUP_BYTES_TO_WDS(bytes);
/* When we actually allocate memory, we need to allow space for the
header: */
bytes = bytes + SIZEOF_StgArrBytes;
/* And we want to align to <alignment> bytes, so we need to allow space
to shift up to <alignment - 1> bytes: */
bytes = bytes + alignment - 1;
/* Now we convert to a number of words: */
words = ROUNDUP_BYTES_TO_WDS(bytes);
("ptr" p) = ccall allocatePinned(MyCapability() "ptr", words);
TICK_ALLOC_PRIM(SIZEOF_StgArrBytes,WDS(payload_words),0);
/* Now we need to move p forward so that the payload is aligned
to <alignment> bytes. Note that we are assuming that
<alignment> is a power of 2, which is technically not guaranteed */
p = p + ((-p - SIZEOF_StgArrBytes) & (alignment - 1));
SET_HDR(p, stg_ARR_WORDS_info, CCCS);
StgArrBytes_bytes(p) = n;
return (p);
}
stg_isByteArrayPinnedzh ( gcptr ba )
// ByteArray# s -> Int#
{
W_ bd, flags;
bd = Bdescr(ba);
// pinned byte arrays live in blocks with the BF_PINNED flag set.
// See the comment in Storage.c:allocatePinned.
flags = TO_W_(bdescr_flags(bd));
return (flags & BF_PINNED != 0);
}
stg_isMutableByteArrayPinnedzh ( gcptr mba )
// MutableByteArray# s -> Int#
{
jump stg_isByteArrayPinnedzh(mba);
}
// shrink size of MutableByteArray in-place
stg_shrinkMutableByteArrayzh ( gcptr mba, W_ new_size )
// MutableByteArray# s -> Int# -> State# s -> State# s
{
ASSERT(new_size >= 0);
ASSERT(new_size <= StgArrBytes_bytes(mba));
OVERWRITING_CLOSURE_OFS(mba, (BYTES_TO_WDS(SIZEOF_StgArrBytes) +
ROUNDUP_BYTES_TO_WDS(new_size)));
StgArrBytes_bytes(mba) = new_size;
LDV_RECORD_CREATE(mba);
return ();
}
// resize MutableByteArray
//
// The returned MutableByteArray is either the original
// MutableByteArray resized in-place or, if not possible, a newly
// allocated (unpinned) MutableByteArray (with the original content
// copied over)
stg_resizzeMutableByteArrayzh ( gcptr mba, W_ new_size )
// MutableByteArray# s -> Int# -> State# s -> (# State# s,MutableByteArray# s #)
{
W_ new_size_wds;
ASSERT(new_size >= 0);
new_size_wds = ROUNDUP_BYTES_TO_WDS(new_size);
if (new_size_wds <= BYTE_ARR_WDS(mba)) {
OVERWRITING_CLOSURE_OFS(mba, (BYTES_TO_WDS(SIZEOF_StgArrBytes) +
new_size_wds));
StgArrBytes_bytes(mba) = new_size;
LDV_RECORD_CREATE(mba);
return (mba);
} else {
(P_ new_mba) = call stg_newByteArrayzh(new_size);
// maybe at some point in the future we may be able to grow the
// MBA in-place w/o copying if we know the space after the
// current MBA is still available, as often we want to grow the
// MBA shortly after we allocated the original MBA. So maybe no
// further allocations have occurred by then.
// copy over old content
prim %memcpy(BYTE_ARR_CTS(new_mba), BYTE_ARR_CTS(mba),
StgArrBytes_bytes(mba), SIZEOF_W);
return (new_mba);
}
}
// RRN: This one does not use the "ticketing" approach because it
// deals in unboxed scalars, not heap pointers.
stg_casIntArrayzh( gcptr arr, W_ ind, W_ old, W_ new )
/* MutableByteArray# s -> Int# -> Int# -> Int# -> State# s -> (# State# s, Int# #) */
{
W_ p, h;
p = arr + SIZEOF_StgArrBytes + WDS(ind);
(h) = prim %cmpxchgW(p, old, new);
return(h);
}
stg_newArrayzh ( W_ n /* words */, gcptr init )
{
W_ words, size, p;
gcptr arr;
again: MAYBE_GC(again);
// the mark area contains one byte for each 2^MUT_ARR_PTRS_CARD_BITS words
// in the array, making sure we round up, and then rounding up to a whole
// number of words.
size = n + mutArrPtrsCardWords(n);
words = BYTES_TO_WDS(SIZEOF_StgMutArrPtrs) + size;
("ptr" arr) = ccall allocate(MyCapability() "ptr",words);
TICK_ALLOC_PRIM(SIZEOF_StgMutArrPtrs, WDS(size), 0);
SET_HDR(arr, stg_MUT_ARR_PTRS_DIRTY_info, CCCS);
StgMutArrPtrs_ptrs(arr) = n;
StgMutArrPtrs_size(arr) = size;
// Initialise all elements of the the array with the value in R2
p = arr + SIZEOF_StgMutArrPtrs;
for:
if (p < arr + SIZEOF_StgMutArrPtrs + WDS(n)) {
W_[p] = init;
p = p + WDS(1);
goto for;
}
return (arr);
}
stg_unsafeThawArrayzh ( gcptr arr )
{
// SUBTLETY TO DO WITH THE OLD GEN MUTABLE LIST
//
// A MUT_ARR_PTRS lives on the mutable list, but a MUT_ARR_PTRS_FROZEN
// normally doesn't. However, when we freeze a MUT_ARR_PTRS, we leave
// it on the mutable list for the GC to remove (removing something from
// the mutable list is not easy).
//
// So that we can tell whether a MUT_ARR_PTRS_FROZEN is on the mutable list,
// when we freeze it we set the info ptr to be MUT_ARR_PTRS_FROZEN0
// to indicate that it is still on the mutable list.
//
// So, when we thaw a MUT_ARR_PTRS_FROZEN, we must cope with two cases:
// either it is on a mut_list, or it isn't. We adopt the convention that
// the closure type is MUT_ARR_PTRS_FROZEN0 if it is on the mutable list,
// and MUT_ARR_PTRS_FROZEN otherwise. In fact it wouldn't matter if
// we put it on the mutable list more than once, but it would get scavenged
// multiple times during GC, which would be unnecessarily slow.
//
if (StgHeader_info(arr) != stg_MUT_ARR_PTRS_FROZEN0_info) {
SET_INFO(arr,stg_MUT_ARR_PTRS_DIRTY_info);
recordMutable(arr);
// must be done after SET_INFO, because it ASSERTs closure_MUTABLE()
return (arr);
} else {
SET_INFO(arr,stg_MUT_ARR_PTRS_DIRTY_info);
return (arr);
}
}
stg_copyArrayzh ( gcptr src, W_ src_off, gcptr dst, W_ dst_off, W_ n )
{
copyArray(src, src_off, dst, dst_off, n)
}
stg_copyMutableArrayzh ( gcptr src, W_ src_off, gcptr dst, W_ dst_off, W_ n )
{
copyMutableArray(src, src_off, dst, dst_off, n)
}
stg_copyArrayArrayzh ( gcptr src, W_ src_off, gcptr dst, W_ dst_off, W_ n )
{
copyArray(src, src_off, dst, dst_off, n)
}
stg_copyMutableArrayArrayzh ( gcptr src, W_ src_off, gcptr dst, W_ dst_off, W_ n )
{
copyMutableArray(src, src_off, dst, dst_off, n)
}
stg_cloneArrayzh ( gcptr src, W_ offset, W_ n )
{
cloneArray(stg_MUT_ARR_PTRS_FROZEN_info, src, offset, n)
}
stg_cloneMutableArrayzh ( gcptr src, W_ offset, W_ n )
{
cloneArray(stg_MUT_ARR_PTRS_DIRTY_info, src, offset, n)
}
// We have to escape the "z" in the name.
stg_freezzeArrayzh ( gcptr src, W_ offset, W_ n )
{
cloneArray(stg_MUT_ARR_PTRS_FROZEN_info, src, offset, n)
}
stg_thawArrayzh ( gcptr src, W_ offset, W_ n )
{
cloneArray(stg_MUT_ARR_PTRS_DIRTY_info, src, offset, n)
}
// RRN: Uses the ticketed approach; see casMutVar
stg_casArrayzh ( gcptr arr, W_ ind, gcptr old, gcptr new )
/* MutableArray# s a -> Int# -> a -> a -> State# s -> (# State# s, Int#, Any a #) */
{
gcptr h;
W_ p, len;
p = arr + SIZEOF_StgMutArrPtrs + WDS(ind);
(h) = prim %cmpxchgW(p, old, new);
if (h != old) {
// Failure, return what was there instead of 'old':
return (1,h);
} else {
// Compare and Swap Succeeded:
SET_HDR(arr, stg_MUT_ARR_PTRS_DIRTY_info, CCCS);
len = StgMutArrPtrs_ptrs(arr);
// The write barrier. We must write a byte into the mark table:
I8[arr + SIZEOF_StgMutArrPtrs + WDS(len) + (ind >> MUT_ARR_PTRS_CARD_BITS )] = 1;
return (0,new);
}
}
stg_newArrayArrayzh ( W_ n /* words */ )
{
W_ words, size, p;
gcptr arr;
MAYBE_GC_N(stg_newArrayArrayzh, n);
// the mark area contains one byte for each 2^MUT_ARR_PTRS_CARD_BITS words
// in the array, making sure we round up, and then rounding up to a whole
// number of words.
size = n + mutArrPtrsCardWords(n);
words = BYTES_TO_WDS(SIZEOF_StgMutArrPtrs) + size;
("ptr" arr) = ccall allocate(MyCapability() "ptr",words);
TICK_ALLOC_PRIM(SIZEOF_StgMutArrPtrs, WDS(size), 0);
SET_HDR(arr, stg_MUT_ARR_PTRS_DIRTY_info, W_[CCCS]);
StgMutArrPtrs_ptrs(arr) = n;
StgMutArrPtrs_size(arr) = size;
// Initialise all elements of the array with a pointer to the new array
p = arr + SIZEOF_StgMutArrPtrs;
for:
if (p < arr + SIZEOF_StgMutArrPtrs + WDS(n)) {
W_[p] = arr;
p = p + WDS(1);
goto for;
}
return (arr);
}
/* -----------------------------------------------------------------------------
SmallArray primitives
-------------------------------------------------------------------------- */
stg_newSmallArrayzh ( W_ n /* words */, gcptr init )
{
W_ words, size, p;
gcptr arr;
again: MAYBE_GC(again);
words = BYTES_TO_WDS(SIZEOF_StgSmallMutArrPtrs) + n;
("ptr" arr) = ccall allocate(MyCapability() "ptr",words);
TICK_ALLOC_PRIM(SIZEOF_StgSmallMutArrPtrs, WDS(n), 0);
SET_HDR(arr, stg_SMALL_MUT_ARR_PTRS_DIRTY_info, CCCS);
StgSmallMutArrPtrs_ptrs(arr) = n;
// Initialise all elements of the the array with the value in R2
p = arr + SIZEOF_StgSmallMutArrPtrs;
for:
if (p < arr + SIZEOF_StgSmallMutArrPtrs + WDS(n)) {
W_[p] = init;
p = p + WDS(1);
goto for;
}
return (arr);
}
stg_unsafeThawSmallArrayzh ( gcptr arr )
{
// See stg_unsafeThawArrayzh
if (StgHeader_info(arr) != stg_SMALL_MUT_ARR_PTRS_FROZEN0_info) {
SET_INFO(arr, stg_SMALL_MUT_ARR_PTRS_DIRTY_info);
recordMutable(arr);
// must be done after SET_INFO, because it ASSERTs closure_MUTABLE()
return (arr);
} else {
SET_INFO(arr, stg_SMALL_MUT_ARR_PTRS_DIRTY_info);
return (arr);
}
}
stg_cloneSmallArrayzh ( gcptr src, W_ offset, W_ n )
{
cloneSmallArray(stg_SMALL_MUT_ARR_PTRS_FROZEN_info, src, offset, n)
}
stg_cloneSmallMutableArrayzh ( gcptr src, W_ offset, W_ n )
{
cloneSmallArray(stg_SMALL_MUT_ARR_PTRS_DIRTY_info, src, offset, n)
}
// We have to escape the "z" in the name.
stg_freezzeSmallArrayzh ( gcptr src, W_ offset, W_ n )
{
cloneSmallArray(stg_SMALL_MUT_ARR_PTRS_FROZEN_info, src, offset, n)
}
stg_thawSmallArrayzh ( gcptr src, W_ offset, W_ n )
{
cloneSmallArray(stg_SMALL_MUT_ARR_PTRS_DIRTY_info, src, offset, n)
}
stg_copySmallArrayzh ( gcptr src, W_ src_off, gcptr dst, W_ dst_off, W_ n)
{
W_ dst_p, src_p, bytes;
SET_INFO(dst, stg_SMALL_MUT_ARR_PTRS_DIRTY_info);
dst_p = dst + SIZEOF_StgSmallMutArrPtrs + WDS(dst_off);
src_p = src + SIZEOF_StgSmallMutArrPtrs + WDS(src_off);
bytes = WDS(n);
prim %memcpy(dst_p, src_p, bytes, SIZEOF_W);
return ();
}
stg_copySmallMutableArrayzh ( gcptr src, W_ src_off, gcptr dst, W_ dst_off, W_ n)
{
W_ dst_p, src_p, bytes;
SET_INFO(dst, stg_SMALL_MUT_ARR_PTRS_DIRTY_info);
dst_p = dst + SIZEOF_StgSmallMutArrPtrs + WDS(dst_off);
src_p = src + SIZEOF_StgSmallMutArrPtrs + WDS(src_off);
bytes = WDS(n);
if (src == dst) {
prim %memmove(dst_p, src_p, bytes, SIZEOF_W);
} else {
prim %memcpy(dst_p, src_p, bytes, SIZEOF_W);
}
return ();
}
// RRN: Uses the ticketed approach; see casMutVar
stg_casSmallArrayzh ( gcptr arr, W_ ind, gcptr old, gcptr new )
/* SmallMutableArray# s a -> Int# -> a -> a -> State# s -> (# State# s, Int#, Any a #) */
{
gcptr h;
W_ p, len;
p = arr + SIZEOF_StgSmallMutArrPtrs + WDS(ind);
(h) = prim %cmpxchgW(p, old, new);
if (h != old) {
// Failure, return what was there instead of 'old':
return (1,h);
} else {
// Compare and Swap Succeeded:
SET_HDR(arr, stg_SMALL_MUT_ARR_PTRS_DIRTY_info, CCCS);
return (0,new);
}
}
/* -----------------------------------------------------------------------------
MutVar primitives
-------------------------------------------------------------------------- */
stg_newMutVarzh ( gcptr init )
{
W_ mv;
ALLOC_PRIM_P (SIZEOF_StgMutVar, stg_newMutVarzh, init);
mv = Hp - SIZEOF_StgMutVar + WDS(1);
SET_HDR(mv,stg_MUT_VAR_DIRTY_info,CCCS);
StgMutVar_var(mv) = init;
return (mv);
}
// RRN: To support the "ticketed" approach, we return the NEW rather
// than old value if the CAS is successful. This is received in an
// opaque form in the Haskell code, preventing the compiler from
// changing its pointer identity. The ticket can then be safely used
// in future CAS operations.
stg_casMutVarzh ( gcptr mv, gcptr old, gcptr new )
/* MutVar# s a -> a -> a -> State# s -> (# State#, Int#, Any a #) */
{
gcptr h;
(h) = prim %cmpxchgW(mv + SIZEOF_StgHeader + OFFSET_StgMutVar_var, old, new);
if (h != old) {
return (1,h);
} else {
if (GET_INFO(mv) == stg_MUT_VAR_CLEAN_info) {
ccall dirty_MUT_VAR(BaseReg "ptr", mv "ptr");
}
return (0,new);
}
}
stg_atomicModifyMutVarzh ( gcptr mv, gcptr f )
{
W_ z, x, y, r, h;
/* If x is the current contents of the MutVar#, then
We want to make the new contents point to
(sel_0 (f x))
and the return value is
(sel_1 (f x))
obviously we can share (f x).
z = [stg_ap_2 f x] (max (HS + 2) MIN_UPD_SIZE)
y = [stg_sel_0 z] (max (HS + 1) MIN_UPD_SIZE)
r = [stg_sel_1 z] (max (HS + 1) MIN_UPD_SIZE)
*/
#if MIN_UPD_SIZE > 1
#define THUNK_1_SIZE (SIZEOF_StgThunkHeader + WDS(MIN_UPD_SIZE))
#define TICK_ALLOC_THUNK_1() TICK_ALLOC_UP_THK(WDS(1),WDS(MIN_UPD_SIZE-1))
#else
#define THUNK_1_SIZE (SIZEOF_StgThunkHeader + WDS(1))
#define TICK_ALLOC_THUNK_1() TICK_ALLOC_UP_THK(WDS(1),0)
#endif
#if MIN_UPD_SIZE > 2
#define THUNK_2_SIZE (SIZEOF_StgThunkHeader + WDS(MIN_UPD_SIZE))
#define TICK_ALLOC_THUNK_2() TICK_ALLOC_UP_THK(WDS(2),WDS(MIN_UPD_SIZE-2))
#else
#define THUNK_2_SIZE (SIZEOF_StgThunkHeader + WDS(2))
#define TICK_ALLOC_THUNK_2() TICK_ALLOC_UP_THK(WDS(2),0)
#endif
#define SIZE (THUNK_2_SIZE + THUNK_1_SIZE + THUNK_1_SIZE)
HP_CHK_GEN_TICKY(SIZE);
TICK_ALLOC_THUNK_2();
CCCS_ALLOC(THUNK_2_SIZE);
z = Hp - THUNK_2_SIZE + WDS(1);
SET_HDR(z, stg_ap_2_upd_info, CCCS);
LDV_RECORD_CREATE(z);
StgThunk_payload(z,0) = f;
TICK_ALLOC_THUNK_1();
CCCS_ALLOC(THUNK_1_SIZE);
y = z - THUNK_1_SIZE;
SET_HDR(y, stg_sel_0_upd_info, CCCS);
LDV_RECORD_CREATE(y);
StgThunk_payload(y,0) = z;
TICK_ALLOC_THUNK_1();
CCCS_ALLOC(THUNK_1_SIZE);
r = y - THUNK_1_SIZE;
SET_HDR(r, stg_sel_1_upd_info, CCCS);
LDV_RECORD_CREATE(r);
StgThunk_payload(r,0) = z;
retry:
x = StgMutVar_var(mv);
StgThunk_payload(z,1) = x;
#ifdef THREADED_RTS
(h) = prim %cmpxchgW(mv + SIZEOF_StgHeader + OFFSET_StgMutVar_var, x, y);
if (h != x) { goto retry; }
#else
StgMutVar_var(mv) = y;
#endif
if (GET_INFO(mv) == stg_MUT_VAR_CLEAN_info) {
ccall dirty_MUT_VAR(BaseReg "ptr", mv "ptr");
}
return (r);
}
/* -----------------------------------------------------------------------------
Weak Pointer Primitives
-------------------------------------------------------------------------- */
STRING(stg_weak_msg,"New weak pointer at %p\n")
stg_mkWeakzh ( gcptr key,
gcptr value,
gcptr finalizer /* or stg_NO_FINALIZER_closure */ )
{
gcptr w;
ALLOC_PRIM (SIZEOF_StgWeak)
w = Hp - SIZEOF_StgWeak + WDS(1);
SET_HDR(w, stg_WEAK_info, CCCS);
StgWeak_key(w) = key;
StgWeak_value(w) = value;
StgWeak_finalizer(w) = finalizer;
StgWeak_cfinalizers(w) = stg_NO_FINALIZER_closure;
StgWeak_link(w) = Capability_weak_ptr_list_hd(MyCapability());
Capability_weak_ptr_list_hd(MyCapability()) = w;
if (Capability_weak_ptr_list_tl(MyCapability()) == NULL) {
Capability_weak_ptr_list_tl(MyCapability()) = w;
}
IF_DEBUG(weak, ccall debugBelch(stg_weak_msg,w));
return (w);
}
stg_mkWeakNoFinalizzerzh ( gcptr key, gcptr value )
{
jump stg_mkWeakzh (key, value, stg_NO_FINALIZER_closure);
}
STRING(stg_cfinalizer_msg,"Adding a finalizer to %p\n")
stg_addCFinalizzerToWeakzh ( W_ fptr, // finalizer
W_ ptr,
W_ flag, // has environment (0 or 1)
W_ eptr,
gcptr w )
{
W_ c, info;
ALLOC_PRIM (SIZEOF_StgCFinalizerList)
c = Hp - SIZEOF_StgCFinalizerList + WDS(1);
SET_HDR(c, stg_C_FINALIZER_LIST_info, CCCS);
StgCFinalizerList_fptr(c) = fptr;
StgCFinalizerList_ptr(c) = ptr;
StgCFinalizerList_eptr(c) = eptr;
StgCFinalizerList_flag(c) = flag;
LOCK_CLOSURE(w, info);
if (info == stg_DEAD_WEAK_info) {
// Already dead.
unlockClosure(w, info);
return (0);
}
StgCFinalizerList_link(c) = StgWeak_cfinalizers(w);
StgWeak_cfinalizers(w) = c;
unlockClosure(w, info);
recordMutable(w);
IF_DEBUG(weak, ccall debugBelch(stg_cfinalizer_msg,w));
return (1);
}
stg_finalizzeWeakzh ( gcptr w )
{
gcptr f, list;
W_ info;
LOCK_CLOSURE(w, info);
// already dead?
if (info == stg_DEAD_WEAK_info) {
unlockClosure(w, info);
return (0,stg_NO_FINALIZER_closure);
}
f = StgWeak_finalizer(w);
list = StgWeak_cfinalizers(w);
// kill it
#ifdef PROFILING
// @LDV profiling
// A weak pointer is inherently used, so we do not need to call
// LDV_recordDead_FILL_SLOP_DYNAMIC():
// LDV_recordDead_FILL_SLOP_DYNAMIC((StgClosure *)w);
// or, LDV_recordDead():
// LDV_recordDead((StgClosure *)w, sizeofW(StgWeak) - sizeofW(StgProfHeader));
// Furthermore, when PROFILING is turned on, dead weak pointers are exactly as
// large as weak pointers, so there is no need to fill the slop, either.
// See stg_DEAD_WEAK_info in StgMiscClosures.hc.
#endif
//
// Todo: maybe use SET_HDR() and remove LDV_recordCreate()?
//
unlockClosure(w, stg_DEAD_WEAK_info);
LDV_RECORD_CREATE(w);
if (list != stg_NO_FINALIZER_closure) {
ccall runCFinalizers(list);
}
/* return the finalizer */
if (f == stg_NO_FINALIZER_closure) {
return (0,stg_NO_FINALIZER_closure);
} else {
return (1,f);
}
}
stg_deRefWeakzh ( gcptr w )
{
W_ code, info;
gcptr val;
info = GET_INFO(w);
if (info == stg_WHITEHOLE_info) {
// w is locked by another thread. Now it's not immediately clear if w is
// alive or not. We use lockClosure to wait for the info pointer to become
// something other than stg_WHITEHOLE_info.
LOCK_CLOSURE(w, info);
unlockClosure(w, info);
}
if (info == stg_WEAK_info) {
code = 1;
val = StgWeak_value(w);
} else {
code = 0;
val = w;
}
return (code,val);
}
/* -----------------------------------------------------------------------------
Floating point operations.
-------------------------------------------------------------------------- */
stg_decodeFloatzuIntzh ( F_ arg )
{
W_ p;
W_ tmp, mp_tmp1, mp_tmp_w, r1, r2;
STK_CHK_GEN_N (WDS(2));
reserve 2 = tmp {
mp_tmp1 = tmp + WDS(1);
mp_tmp_w = tmp;
/* Perform the operation */
ccall __decodeFloat_Int(mp_tmp1 "ptr", mp_tmp_w "ptr", arg);
r1 = W_[mp_tmp1];
r2 = W_[mp_tmp_w];
}
/* returns: (Int# (mantissa), Int# (exponent)) */
return (r1, r2);
}
stg_decodeDoublezu2Intzh ( D_ arg )
{
W_ p, tmp;
W_ mp_tmp1, mp_tmp2, mp_result1, mp_result2;
W_ r1, r2, r3, r4;
STK_CHK_GEN_N (WDS(4));
reserve 4 = tmp {
mp_tmp1 = tmp + WDS(3);
mp_tmp2 = tmp + WDS(2);
mp_result1 = tmp + WDS(1);
mp_result2 = tmp;
/* Perform the operation */
ccall __decodeDouble_2Int(mp_tmp1 "ptr", mp_tmp2 "ptr",
mp_result1 "ptr", mp_result2 "ptr",
arg);
r1 = W_[mp_tmp1];
r2 = W_[mp_tmp2];
r3 = W_[mp_result1];
r4 = W_[mp_result2];
}
/* returns:
(Int# (mant sign), Word# (mant high), Word# (mant low), Int# (expn)) */
return (r1, r2, r3, r4);
}
/* Double# -> (# Int64#, Int# #) */
stg_decodeDoublezuInt64zh ( D_ arg )
{
CInt exp;
I64 mant;
W_ mant_ptr;
STK_CHK_GEN_N (SIZEOF_INT64);
reserve BYTES_TO_WDS(SIZEOF_INT64) = mant_ptr {
(exp) = ccall __decodeDouble_Int64(mant_ptr "ptr", arg);
mant = I64[mant_ptr];
}
return (mant, TO_W_(exp));
}
/* -----------------------------------------------------------------------------
* Concurrency primitives
* -------------------------------------------------------------------------- */
stg_forkzh ( gcptr closure )
{
MAYBE_GC_P(stg_forkzh, closure);
gcptr threadid;
("ptr" threadid) = ccall createIOThread( MyCapability() "ptr",
RtsFlags_GcFlags_initialStkSize(RtsFlags),
closure "ptr");
/* start blocked if the current thread is blocked */
StgTSO_flags(threadid) = %lobits16(
TO_W_(StgTSO_flags(threadid)) |
TO_W_(StgTSO_flags(CurrentTSO)) & (TSO_BLOCKEX | TSO_INTERRUPTIBLE));
ccall scheduleThread(MyCapability() "ptr", threadid "ptr");
// context switch soon, but not immediately: we don't want every
// forkIO to force a context-switch.
Capability_context_switch(MyCapability()) = 1 :: CInt;
return (threadid);
}
stg_forkOnzh ( W_ cpu, gcptr closure )
{
again: MAYBE_GC(again);
gcptr threadid;
("ptr" threadid) = ccall createIOThread(
MyCapability() "ptr",
RtsFlags_GcFlags_initialStkSize(RtsFlags),
closure "ptr");
/* start blocked if the current thread is blocked */
StgTSO_flags(threadid) = %lobits16(
TO_W_(StgTSO_flags(threadid)) |
TO_W_(StgTSO_flags(CurrentTSO)) & (TSO_BLOCKEX | TSO_INTERRUPTIBLE));
ccall scheduleThreadOn(MyCapability() "ptr", cpu, threadid "ptr");
// context switch soon, but not immediately: we don't want every
// forkIO to force a context-switch.
Capability_context_switch(MyCapability()) = 1 :: CInt;
return (threadid);
}
stg_yieldzh ()
{
// when we yield to the scheduler, we have to tell it to put the
// current thread to the back of the queue by setting the
// context_switch flag. If we don't do this, it will run the same
// thread again.
Capability_context_switch(MyCapability()) = 1 :: CInt;
jump stg_yield_noregs();
}
stg_myThreadIdzh ()
{
return (CurrentTSO);
}
stg_labelThreadzh ( gcptr threadid, W_ addr )
{
#if defined(DEBUG) || defined(TRACING) || defined(DTRACE)
ccall labelThread(MyCapability() "ptr", threadid "ptr", addr "ptr");
#endif
return ();
}
stg_isCurrentThreadBoundzh (/* no args */)
{
W_ r;
(r) = ccall isThreadBound(CurrentTSO);
return (r);
}
stg_threadStatuszh ( gcptr tso )
{
W_ why_blocked;
W_ what_next;
W_ ret, cap, locked;
what_next = TO_W_(StgTSO_what_next(tso));
why_blocked = TO_W_(StgTSO_why_blocked(tso));
// Note: these two reads are not atomic, so they might end up
// being inconsistent. It doesn't matter, since we
// only return one or the other. If we wanted to return the
// contents of block_info too, then we'd have to do some synchronisation.
if (what_next == ThreadComplete) {
ret = 16; // NB. magic, matches up with GHC.Conc.threadStatus
} else {
if (what_next == ThreadKilled) {
ret = 17;
} else {
ret = why_blocked;
}
}
cap = TO_W_(Capability_no(StgTSO_cap(tso)));
if ((TO_W_(StgTSO_flags(tso)) & TSO_LOCKED) != 0) {
locked = 1;
} else {
locked = 0;
}
return (ret,cap,locked);
}
/* -----------------------------------------------------------------------------
* TVar primitives
* -------------------------------------------------------------------------- */
// Catch retry frame -----------------------------------------------------------
#define CATCH_RETRY_FRAME_FIELDS(w_,p_,info_ptr, \
p1, p2, \
running_alt_code, \
first_code, \
alt_code) \
w_ info_ptr, \
PROF_HDR_FIELDS(w_,p1,p2) \
w_ running_alt_code, \
p_ first_code, \
p_ alt_code
INFO_TABLE_RET(stg_catch_retry_frame, CATCH_RETRY_FRAME,
CATCH_RETRY_FRAME_FIELDS(W_,P_,
info_ptr, p1, p2,
running_alt_code,
first_code,
alt_code))
return (P_ ret)
{
W_ r;
gcptr trec, outer, arg;
trec = StgTSO_trec(CurrentTSO);
outer = StgTRecHeader_enclosing_trec(trec);
(r) = ccall stmCommitNestedTransaction(MyCapability() "ptr", trec "ptr");
if (r != 0) {
// Succeeded (either first branch or second branch)
StgTSO_trec(CurrentTSO) = outer;
return (ret);