forked from pytorch/executorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelocatable_runner.cpp
332 lines (284 loc) · 10.6 KB
/
relocatable_runner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <memory>
#include <vector>
#include <executorch/extension/data_loader/buffer_data_loader.h>
#include <executorch/runtime/executor/method.h>
#include <executorch/runtime/executor/program.h>
#include <executorch/runtime/platform/log.h>
#include <executorch/runtime/platform/runtime.h>
#include <executorch/util/read_file.h>
#include <executorch/util/util.h>
#include <gflags/gflags.h>
using namespace torch::executor;
/**
* @file
*
* In some hardware environments, the same model may run on different cores for
* different inference requests. The same core may also see a power-cycle (i.e.,
* power down and then back up) in between two inference requests.
*
* For ExecuTorch to work efficiently in these environments, we want to
* initialize the Method once once for the model and avoid re-initializing it
* for every inference. This can be achieved by restricting the runtime contexts
* (torch::executor::Program and torch::executor::Method) to live in a
* pre-allocated, shared, and persistent memory.
*
* This tool demonstrates that the memory can be managed this way.
*/
static uint8_t method_allocator_pool[2 * 1024U * 1024U]; // 4 MB
#define MAX_INPUTS_PER_MODEL 16
#define MAX_OUTPUTS_PER_MODEL 8
DEFINE_string(
model_path,
"model.pte",
"Model serialized in flatbuffer format.");
// These functions represent the work done on a worker core.
namespace worker {
Program* load_program(
const void* file_data,
size_t file_data_len,
MemoryAllocator& allocator) {
// Wrap the data in a DataLoader. The Program will take a pointer to it, so it
// must live for at least as long as the Program instance.
auto loader = allocator.allocateInstance<util::BufferDataLoader>();
ET_CHECK(loader != nullptr);
new (loader) util::BufferDataLoader(file_data, file_data_len);
// Load the program.
Result<Program> program_result = Program::load(loader);
ET_CHECK(program_result.ok());
// Move the Program into worker memory.
auto program = allocator.allocateInstance<Program>();
ET_CHECK(program != nullptr);
new (program) Program(std::move(program_result.get()));
return program;
}
MemoryManager* create_memory_manager(
MethodMeta* method_meta,
MemoryAllocator& worker_allocator) {
// Create the runtime allocator.
auto* method_allocator = worker_allocator.allocateInstance<MemoryAllocator>();
ET_CHECK(method_allocator != nullptr);
new (method_allocator)
MemoryAllocator(sizeof(method_allocator_pool), method_allocator_pool);
// Create the memory planned buffers.
size_t num_memory_planned_buffers = method_meta->num_memory_planned_buffers();
Span<uint8_t>* memory_planned_buffers =
worker_allocator.allocateList<Span<uint8_t>>(num_memory_planned_buffers);
ET_CHECK(memory_planned_buffers != nullptr);
for (size_t id = 0; id < num_memory_planned_buffers; ++id) {
const size_t buffer_size =
method_meta->memory_planned_buffer_size(id).get();
ET_LOG(
Info, "Setting up planned buffer id %zu, size %zu.", id, buffer_size);
void* buffer = worker_allocator.allocate(buffer_size);
ET_CHECK(buffer != nullptr);
memory_planned_buffers[id] = {(uint8_t*)buffer, buffer_size};
ET_LOG(
Info,
"Created memory_planned_buffers with size %zu and addr %p",
buffer_size,
buffer);
}
auto* planned_memory =
worker_allocator.allocateInstance<HierarchicalAllocator>();
ET_CHECK(planned_memory != nullptr);
new (planned_memory) HierarchicalAllocator(
{memory_planned_buffers, num_memory_planned_buffers});
// The constant allocator is not currently used, but must be provided.
auto* const_allocator = worker_allocator.allocateInstance<MemoryAllocator>();
ET_CHECK(const_allocator != nullptr);
new (const_allocator) MemoryAllocator(0, nullptr);
// Assemble all of the allocators into the MemoryManager that the Method
// will use.
auto* memory_manager = worker_allocator.allocateInstance<MemoryManager>();
ET_CHECK(memory_manager != nullptr);
new (memory_manager) MemoryManager(method_allocator, planned_memory);
return memory_manager;
}
Method* init_method(
Program* program,
const char* method_name,
MemoryAllocator& worker_allocator,
std::vector<size_t>& input_sizes,
std::vector<size_t>& output_sizes) {
Result<MethodMeta> method_meta = program->method_meta(method_name);
ET_CHECK(method_meta.ok());
MemoryManager* memory_manager =
create_memory_manager(&method_meta.get(), worker_allocator);
//
// Create and load a method from the program, using the provided
// allocators. The Method is what actually runs the model. It is
// mutable, so should only be used by a single thread at at time, but it can
// be reused.
//
auto* method = worker_allocator.allocateInstance<Method>();
ET_CHECK(method != nullptr);
auto method_res = program->load_method(method_name, memory_manager);
ET_CHECK_MSG(
method_res.error() == Error::Ok,
"loading method('%s') failed with status 0x%" PRIx32,
method_name,
method_res.error());
new (method) Method(std::move(method_res.get()));
ET_LOG(Info, "Model method '%s' initialized.", method_name);
// Gather the byte size of each input/output tensor.
const size_t input_size = method->inputs_size();
for (size_t i = 0; i < input_size; i++) {
if (!method->get_input(i).isTensor()) {
ET_LOG(Info, "input %zu is not a tensor, skipping", i);
continue;
}
const auto& t = method->get_input(i).toTensor();
input_sizes.push_back(t.nbytes());
}
const size_t output_size = method->outputs_size();
for (size_t i = 0; i < output_size; i++) {
const auto& t = method->get_output(i).toTensor();
output_sizes.push_back(t.nbytes());
}
return method;
}
void inference_loop(
Method* method,
const std::vector<void*>& input_buffers,
const std::vector<void*>& output_buffers) {
ET_LOG(
Info,
"Assigning input pointers, receiving %lu inputs",
input_buffers.size());
// Prepare the inputs.
{
size_t bufi = 0;
for (size_t i = 0; i < method->inputs_size(); i++) {
if (!method->get_input(i).isTensor()) {
ET_LOG(Info, "input %zu is not a tensor, skipping", i);
continue;
}
const auto& t = method->get_input(i).toTensor();
ET_CHECK_MSG(
bufi < input_buffers.size(), "Not enough input buffers for model");
t.set_data(input_buffers[bufi++]);
}
}
ET_LOG(Info, "Inputs prepared.");
// Prepare the outputs.
{
size_t bufi = 0;
for (size_t i = 0; i < method->outputs_size(); i++) {
if (!method->get_output(i).isTensor()) {
ET_LOG(Info, "output %zu is not a tensor, skipping", i);
continue;
}
const auto& t = method->get_output(i).toTensor();
ET_CHECK_MSG(
bufi < output_buffers.size(), "Not enough output buffers for model");
t.set_data(output_buffers[bufi++]);
}
}
ET_LOG(Info, "Outputs prepared.");
// Run the model.
Error status = method->execute();
ET_CHECK_MSG(
status == Error::Ok,
"method->execute() failed with status 0x%" PRIx32,
status);
ET_LOG(Info, "Model executed successfully.");
}
} // namespace worker
/*
* This is an example of how ExecuTorch stack should run on multiple
* processors setup where there is a control core for memory
* management and a worker core that runs the actual inference.
*/
int main(int argc, char** argv) {
torch::executor::runtime_init();
gflags::ParseCommandLineFlags(&argc, &argv, true);
/*
* Step 1: The model gets loaded from file to memory on the control core
*/
std::shared_ptr<char> file_data;
size_t file_size;
Error err = torch::executor::util::read_file_content(
FLAGS_model_path.c_str(), &file_data, &file_size);
ET_CHECK_MSG(err == Error::Ok, "read_file_content failed: %d", int(err));
/*
* Step 2: Prepare the memory space required for worker core
*/
// The actual allocation size can be backend/model specific and smaller
constexpr size_t kWorkerBufferSize = 1 * 1024U * 1024U; // 1 MB
auto worker_buffer = std::make_unique<uint8_t[]>(kWorkerBufferSize);
MemoryAllocator worker_allocator(kWorkerBufferSize, worker_buffer.get());
/*
* Step 3: The worker core sets up the corresponding data structures for the
* program
*/
Program* program =
worker::load_program(file_data.get(), file_size, worker_allocator);
ET_LOG(
Info,
"Loaded %s and constructed program at %p",
FLAGS_model_path.c_str(),
program);
ET_CHECK(program != nullptr);
/*
* Step 4: The worker core sets up the Method. Here we let the control
* core read out the I/O info from the Method. This can also be done on
* the control core from the program flatbuffer, though there is no
* direct API at the moment.
*/
// Get the method name to execute.
const char* method_name = nullptr;
{
// Use the first method in the program.
const auto method_name_result = program->get_method_name(0);
ET_CHECK_MSG(method_name_result.ok(), "Program has no methods");
method_name = *method_name_result;
}
ET_LOG(Info, "Using method %s", method_name);
std::vector<size_t> input_sizes;
std::vector<size_t> output_sizes;
Method* method = worker::init_method(
program, method_name, worker_allocator, input_sizes, output_sizes);
ET_LOG(
Info,
"Number of inputs is %lu and number of outputs is %lu",
input_sizes.size(),
output_sizes.size());
/*
* Step 5: The control core or the applicaton code prepares the I/O
*/
// Allocate and initialize input/output tensor buffers for the inference
std::vector<void*> input_buffers;
for (size_t buffer_size : input_sizes) {
void* buffer = malloc(buffer_size);
memset(static_cast<char*>(buffer), 0, buffer_size);
input_buffers.push_back(buffer);
}
ET_LOG(Info, "Allocated the inputs");
std::vector<void*> output_buffers;
for (size_t buffer_size : output_sizes) {
void* buffer = malloc(buffer_size);
memset(static_cast<char*>(buffer), 0, buffer_size);
output_buffers.push_back(buffer);
}
ET_LOG(Info, "Allocated the outputs");
/*
* Step 6: The control core forwards the inference request and the worker
* core runs the program.
*/
// Run the inference on the inputs. CHECK-fails on error.
worker::inference_loop(method, input_buffers, output_buffers);
for (void* buffer : input_buffers) {
free(buffer);
}
for (void* buffer : output_buffers) {
free(buffer);
}
return 0;
}