-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencoding.py
431 lines (355 loc) · 16.6 KB
/
encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# METHODS USED FOR ENCODING THE LOG'S TRACES AND VARIANTS
import numpy as np
# EVENT PROFILE ENCODING - 1 VECTOR PER TRACE:
# Encoding of all traces in the log:
def event_profile_encoding_all_traces(log):
from general_methods import event_names
event_names = sorted(event_names(log))
trace_encoding_event_profile = []
for case in log:
trace_encoding = dict.fromkeys(event_names, 0)
for event in case:
trace_encoding[event["concept:name"]] += 1
trace_encoding_event_profile.append([*trace_encoding.values()])
return np.asarray(trace_encoding_event_profile)
# Encoding of all variants in the log:
def event_profile_encoding_all_variants(log):
from general_methods import variant_list
from general_methods import event_names
var_list = variant_list(log)
event_names = sorted(event_names(log))
variant_encoding_event_profile = []
for variant in var_list:
variant_encoding = dict.fromkeys(event_names, 0)
for event in variant:
variant_encoding[event] += 1
variant_encoding_event_profile.append([*variant_encoding.values()])
return np.asarray(variant_encoding_event_profile)
# K-GRAM ENCODING - 1 VECTOR PER TRACE:
# Encoding of all traces in the log:
def k_gram_encoding_all_traces(log, k):
from general_methods import variant_list, case_list
variant_list = variant_list(log)
# create k-gram list
k_gram_list = []
for var in variant_list:
for i in range(len(var) - k + 1):
k_gram = ''.join(var[i:(i+k)])
if k_gram not in k_gram_list:
k_gram_list.append(k_gram)
# create k-gram encoding
k_gram_enc = []
case_list = case_list(log)
for case in case_list:
case_k_gram_enc = []
case_k_gram_list = [''.join(case[i:(i+k)]) for i in range(len(case) - k + 1)]
for i in k_gram_list:
counter = 0
for j in case_k_gram_list:
if i == j:
counter += 1
case_k_gram_enc.append(counter)
k_gram_enc.append(case_k_gram_enc)
return np.asarray(k_gram_enc)
# Encoding of all variants in the log:
def k_gram_encoding_all_variants(log, k):
from general_methods import variant_list
var_list = variant_list(log)
# create k-gram list
k_gram_list = []
for var in var_list:
for i in range(len(var) - k + 1):
k_gram = ''.join(var[i:(i+k)])
if k_gram not in k_gram_list:
k_gram_list.append(k_gram)
# create k-gram encoding
k_gram_enc = []
for var in var_list:
var_k_gram_enc = []
var_k_gram_list = [''.join(var[i:(i+k)]) for i in range(len(var) - k + 1)]
for i in k_gram_list:
counter = 0
for j in var_k_gram_list:
if i == j:
counter += 1
var_k_gram_enc.append(counter)
k_gram_enc.append(var_k_gram_enc)
return np.asarray(k_gram_enc)
# RANK PROFILE ENCODING - 1 VECTOR PER TRACE:
# Encoding of all traces in the log:
def rank_profile_encoding_all_traces(log):
from general_methods import case_list, ranking_dict
case_rep = case_list(log)
ranking_dict = ranking_dict(log)
case_rank_encoding_list = []
for case in case_rep:
case_rank_encoding = []
for event in case:
case_rank_encoding.append(ranking_dict[event])
case_rank_encoding_list.append(case_rank_encoding)
return np.asarray(case_rank_encoding_list)
# Encoding of all variants in the log:
def rank_profile_encoding_all_variants(log):
from general_methods import variant_list, ranking_dict
var_list = variant_list(log)
ranking_dict = ranking_dict(log)
variant_rank_encoding_list = []
for variant in var_list:
variant_rank_encoding = []
for event in variant:
variant_rank_encoding.append(ranking_dict[event])
variant_rank_encoding_list.append(variant_rank_encoding)
return np.asarray(variant_rank_encoding_list)
# TRANSITION PROFILE ENCODING - 1 SQUARE MATRIX PER TRACE:
# Encoding of all traces in the log - count +1 for each transition:
def transition_profile_encoding_all_traces_matrix(log):
from general_methods import event_names
case_rank_encoding_list = rank_profile_encoding_all_traces(log)
matrix_shape = len(event_names(log))
event_transition_profile = []
for case in case_rank_encoding_list:
initial_matrix = np.zeros(shape=(matrix_shape, matrix_shape))
for (i, j) in zip(case, case[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
event_transition_profile.append(initial_matrix)
return np.asarray(event_transition_profile)
# Encoding of all variants in the log - count +1 for each transition:
def transition_profile_encoding_all_variants_matrix(log):
from general_methods import event_names
variant_rank_encoding_list = rank_profile_encoding_all_variants(log)
matrix_shape = len(event_names(log))
event_transition_profile = []
for var in variant_rank_encoding_list:
initial_matrix = np.zeros(shape=(matrix_shape, matrix_shape))
for (i, j) in zip(var, var[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
event_transition_profile.append(initial_matrix)
return np.asarray(event_transition_profile)
# Markov Chain Transition Profile Encoding of all traces in the log - probability for each transition:
def markov_chain_transition_profile_encoding_all_traces_matrix(log):
from general_methods import event_names
case_rank_encoding_list = rank_profile_encoding_all_traces(log)
event_transition_profile = []
matrix_shape = len(event_names(log))
for case in case_rank_encoding_list:
initial_matrix = np.zeros(shape=[matrix_shape, matrix_shape])
for (i, j) in zip(case, case[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
for row in initial_matrix:
n = sum(row)
if n > 0:
row[:] = [(f / n) for f in row]
event_transition_profile.append(initial_matrix)
return np.asarray(event_transition_profile)
# Markov Chain Transition Profile Encoding of all variants in the log - probability for each transition:
def markov_chain_transition_profile_encoding_all_variants_matrix(log):
from general_methods import event_names
variant_rank_encoding_list = rank_profile_encoding_all_variants(log)
event_transition_profile = []
matrix_shape = len(event_names(log))
for var in variant_rank_encoding_list:
initial_matrix = np.zeros(shape=[matrix_shape, matrix_shape])
for (i, j) in zip(var, var[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
for row in initial_matrix:
n = sum(row)
if n > 0:
row[:] = [(f / n) for f in row]
event_transition_profile.append(initial_matrix)
return np.asarray(event_transition_profile)
# TRANSITION PROFILE ENCODING - 1 VECTOR PER TRACE:
# Encoding of all traces in the log - count +1 for each transition:
def transition_profile_encoding_all_traces_vector(log):
from general_methods import event_names
case_rank_encoding_list = rank_profile_encoding_all_traces(log)
matrix_shape = len(event_names(log))
event_transition_profile = []
for case in case_rank_encoding_list:
initial_matrix = np.zeros(shape=(matrix_shape, matrix_shape))
for (i, j) in zip(case, case[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
event_transition_profile.append(initial_matrix)
return np.reshape(event_transition_profile, newshape=(len(log), matrix_shape**2))
# Encoding of all variants in the log - count +1 for each transition:
def transition_profile_encoding_all_variants_vector(log):
from general_methods import event_names
variant_rank_encoding_list = rank_profile_encoding_all_variants(log)
matrix_shape = len(event_names(log))
event_transition_profile = []
for var in variant_rank_encoding_list:
initial_matrix = np.zeros(shape=(matrix_shape, matrix_shape))
for (i, j) in zip(var, var[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
event_transition_profile.append(initial_matrix)
return np.reshape(event_transition_profile, newshape=(len(variant_rank_encoding_list), matrix_shape**2))
# Markov Chain Transition Profile Encoding of all traces in the log - probability for each transition:
def markov_chain_transition_profile_encoding_all_traces_vector(log):
from general_methods import event_names
case_rank_encoding_list = rank_profile_encoding_all_traces(log)
event_transition_profile = []
matrix_shape = len(event_names(log))
for case in case_rank_encoding_list:
initial_matrix = np.zeros(shape=[matrix_shape, matrix_shape])
for (i, j) in zip(case, case[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
for row in initial_matrix:
n = sum(row)
if n > 0:
row[:] = [(f / n) for f in row]
event_transition_profile.append(initial_matrix)
return np.reshape(event_transition_profile, newshape=(len(log), matrix_shape**2))
# Markov Chain Transition Profile Encoding of all variants in the log - probability for each transition:
def markov_chain_transition_profile_encoding_all_variants_vector(log):
from general_methods import event_names
variant_rank_encoding_list = rank_profile_encoding_all_variants(log)
event_transition_profile = []
matrix_shape = len(event_names(log))
for var in variant_rank_encoding_list:
initial_matrix = np.zeros(shape=[matrix_shape, matrix_shape])
for (i, j) in zip(var, var[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
for row in initial_matrix:
n = sum(row)
if n > 0:
row[:] = [(f / n) for f in row]
event_transition_profile.append(initial_matrix)
return np.reshape(event_transition_profile, newshape=(len(variant_rank_encoding_list), matrix_shape**2))
# Markov Chain Transition Profile Encoding of all traces in the log - mean probability for each transition:
def markov_chain_transition_profile_encoding_all_traces_vector_mean(log):
from general_methods import event_names
case_rank_encoding_list = rank_profile_encoding_all_traces(log)
event_transition_profile = []
matrix_shape = len(event_names(log))
for case in case_rank_encoding_list:
case_rep = []
initial_matrix = np.zeros(shape=[matrix_shape, matrix_shape])
for (i, j) in zip(case, case[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
for row in initial_matrix:
n = sum(row)
if n > 0:
row[:] = [(f / n) for f in row]
case_rep.append(np.mean(row))
event_transition_profile.append(case_rep)
return np.asarray(event_transition_profile)
# Markov Chain Transition Profile Encoding of all variants in the log - mean probability for each transition:
def markov_chain_transition_profile_encoding_all_variants_vector_mean(log):
from general_methods import event_names
variant_rank_encoding_list = rank_profile_encoding_all_variants(log)
event_transition_profile = []
matrix_shape = len(event_names(log))
for var in variant_rank_encoding_list:
var_rep = []
initial_matrix = np.zeros(shape=[matrix_shape, matrix_shape])
for (i, j) in zip(var, var[1:]): # builds pairs of ranks directly following each other, e.g [(1,2), (2,3)]
initial_matrix[i][j] += 1
for row in initial_matrix:
n = sum(row)
if n > 0:
row[:] = [(f / n) for f in row]
var_rep.append(np.mean(row))
event_transition_profile.append(var_rep)
return np.asarray(event_transition_profile)
# UNDIRECTED GRAPH ENCODING - 1 VECTOR PER TRACE:
# Undirected Graph Degree Vector Encoding for all traces in the log
def undirected_graph_degree_vector_encoding_all_traces(log):
from general_methods import case_list
from general_methods import event_names
import numpy as np
event_names = sorted(event_names(log))
cases = case_list(log)
trace_encoding_event_profile = []
for case in cases:
trace_encoding = dict.fromkeys(event_names, 0)
dfg = list(zip(case, case[1:]))
for event in event_names:
for elem in dfg:
if event in elem:
trace_encoding[event] += 1
trace_encoding_event_profile.append([*trace_encoding.values()])
return np.asarray(trace_encoding_event_profile)
# Undirected Graph Degree Vector Encoding for all variants in the log
def undirected_graph_degree_vector_encoding_all_variants(log):
from general_methods import variant_list
from general_methods import event_names
import numpy as np
event_names = sorted(event_names(log))
variants = variant_list(log)
trace_encoding_event_profile = []
for var in variants:
trace_encoding = dict.fromkeys(event_names, 0)
dfg = list(zip(var, var[1:]))
for event in event_names:
for elem in dfg:
if event in elem:
trace_encoding[event] += 1
trace_encoding_event_profile.append([*trace_encoding.values()])
return np.asarray(trace_encoding_event_profile)
# Undirected Graph Outgoing Vector Encoding for all traces in the log
def undirected_graph_outgoing_vector_encoding_all_traces(log):
from general_methods import case_list
from general_methods import event_names
import numpy as np
event_names = sorted(event_names(log))
cases = case_list(log)
trace_encoding_event_profile = []
for case in cases:
trace_encoding = dict.fromkeys(event_names, 0)
dfg = list(zip(case, case[1:]))
for event in event_names:
for elem in dfg:
if event == elem[0]:
trace_encoding[event] += 1
trace_encoding_event_profile.append([*trace_encoding.values()])
return np.asarray(trace_encoding_event_profile)
# Undirected Graph Outgoing Vector Encoding for all variants in the log
def undirected_graph_outgoing_vector_encoding_all_variants(log):
from general_methods import variant_list
from general_methods import event_names
import numpy as np
event_names = sorted(event_names(log))
variants = variant_list(log)
trace_encoding_event_profile = []
for var in variants:
trace_encoding = dict.fromkeys(event_names, 0)
dfg = list(zip(var, var[1:]))
for event in event_names:
for elem in dfg:
if event == elem[0]:
trace_encoding[event] += 1
trace_encoding_event_profile.append([*trace_encoding.values()])
return np.asarray(trace_encoding_event_profile)
# Undirected Graph Incoming Vector Encoding for all traces in the log
def undirected_graph_incoming_vector_encoding_all_traces(log):
from general_methods import case_list
from general_methods import event_names
import numpy as np
event_names = sorted(event_names(log))
cases = case_list(log)
trace_encoding_event_profile = []
for case in cases:
trace_encoding = dict.fromkeys(event_names, 0)
dfg = list(zip(case, case[1:]))
for event in event_names:
for elem in dfg:
if event == elem[1]:
trace_encoding[event] += 1
trace_encoding_event_profile.append([*trace_encoding.values()])
return np.asarray(trace_encoding_event_profile)
# Undirected Graph Incoming Vector Encoding for all variants in the log
def undirected_graph_incoming_vector_encoding_all_variants(log):
from general_methods import variant_list
from general_methods import event_names
import numpy as np
event_names = sorted(event_names(log))
variants = variant_list(log)
trace_encoding_event_profile = []
for var in variants:
trace_encoding = dict.fromkeys(event_names, 0)
dfg = list(zip(var, var[1:]))
for event in event_names:
for elem in dfg:
if event == elem[1]:
trace_encoding[event] += 1
trace_encoding_event_profile.append([*trace_encoding.values()])
return np.asarray(trace_encoding_event_profile)