- libknot 2.0 (Knot DNS high-performance DNS library.)
The library as described provides basic services for name resolution, which should cover the usage, examples are in the :ref:`resolve API <lib_api_rplan>` documentation.
Tip
If you're migrating from getaddrinfo()
, see "synchronous" API, but the library offers iterative API as well to plug it into your event loop for example.
The resolution process starts with the functions in :ref:`resolve.c <lib_api_rplan>`, they are responsible for:
- reacting to state machine state (i.e. calling consume layers if we have an answer ready)
- interacting with the library user (i.e. asking caller for I/O, accepting queries)
- fetching assets needed by layers (i.e. zone cut)
This is the driver. The driver is not meant to know "how" the query resolves, but rather "when" to execute "what".
On the other side are layers. They are responsible for dissecting the packets and informing the driver about the results. For example, a produce layer generates query, a consume layer validates answer.
Tip
Layers are executed asynchronously by the driver. If you need some asset beforehand, you can signalize the driver using returning state or current query flags. For example, setting a flag AWAIT_CUT
forces driver to fetch zone cut information before the packet is consumed; setting a RESOLVED
flag makes it pop a query after the current set of layers is finished; returning FAIL
state makes it fail current query.
Layers can also change course of resolution, for example by appending additional queries.
consume = function (state, req, answer)
if answer:qtype() == kres.type.NS then
local qry = req:push(answer:qname(), kres.type.SOA, kres.class.IN)
qry.flags.AWAIT_CUT = true
end
return state
end
This doesn't block currently processed query, and the newly created sub-request will start as soon as driver finishes processing current. In some cases you might need to issue sub-request and process it before continuing with the current, i.e. validator may need a DNSKEY before it can validate signatures. In this case, layers can yield and resume afterwards.
consume = function (state, req, answer)
if state == kres.YIELD then
print('continuing yielded layer')
return kres.DONE
else
if answer:qtype() == kres.type.NS then
local qry = req:push(answer:qname(), kres.type.SOA, kres.class.IN)
qry.flags.AWAIT_CUT = true
print('planned SOA query, yielding')
return kres.YIELD
end
return state
end
end
The YIELD
state is a bit special. When a layer returns it, it interrupts current walk through the layers. When the layer receives it,
it means that it yielded before and now it is resumed. This is useful in a situation where you need a sub-request to determine whether current answer is valid or not.
Warning
FIXME: this dev-docs section is outdated! Better see comments in files instead, for now.
The resolver :ref:`library <lib_index>` leverages the processing API from the libknot to separate packet processing code into layers.
Note
This is only crash-course in the library internals, see the resolver :ref:`library <lib_index>` documentation for the complete overview of the services.
The library offers following services:
- :ref:`Cache <lib_api_cache>` - MVCC cache interface for retrieving/storing resource records.
- :ref:`Resolution plan <lib_api_rplan>` - Query resolution plan, a list of partial queries (with hierarchy) sent in order to satisfy original query. This contains information about the queries, nameserver choice, timing information, answer and its class.
- :ref:`Nameservers <lib_api_nameservers>` - Reputation database of nameservers, this serves as an aid for nameserver choice.
A processing layer is going to be called by the query resolution driver for each query, so you're going to work with :ref:`struct kr_request <lib_api_rplan>` as your per-query context. This structure contains pointers to resolution context, resolution plan and also the final answer.
int consume(kr_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
}
This is only passive processing of the incoming answer. If you want to change the course of resolution, say satisfy a query from a local cache before the library issues a query to the nameserver, you can use states (see the :ref:`Static hints <mod-hints>` for example).
int produce(kr_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
/* Query can be satisfied locally. */
if (can_satisfy(qry)) {
/* This flag makes the resolver move the query
* to the "resolved" list. */
qry->flags.RESOLVED = true;
return KR_STATE_DONE;
}
/* Pass-through. */
return ctx->state;
}
It is possible to not only act during the query resolution, but also to view the complete resolution plan afterwards. This is useful for analysis-type tasks, or "per answer" hooks.
int finish(kr_layer_t *ctx)
{
struct kr_request *req = ctx->req;
struct kr_rplan *rplan = req->rplan;
/* Print the query sequence with start time. */
char qname_str[KNOT_DNAME_MAXLEN];
struct kr_query *qry = NULL
WALK_LIST(qry, rplan->resolved) {
knot_dname_to_str(qname_str, qry->sname, sizeof(qname_str));
printf("%s at %u\n", qname_str, qry->timestamp);
}
return ctx->state;
}
The APIs in Lua world try to mirror the C APIs using LuaJIT FFI, with several differences and enhancements. There is not comprehensive guide on the API yet, but you can have a look at the bindings file.
- States are directly in
kres
table, e.g.kres.YIELD, kres.CONSUME, kres.PRODUCE, kres.DONE, kres.FAIL
. - DNS classes are in
kres.class
table, e.g.kres.class.IN
for Internet class. - DNS types are in
kres.type
table, e.g.kres.type.AAAA
for AAAA type. - DNS rcodes types are in
kres.rcode
table, e.g.kres.rcode.NOERROR
. - Extended DNS error codes are in
kres.extended_error
table, e.g.kres.extended_error.BLOCKED
. - Packet sections (QUESTION, ANSWER, AUTHORITY, ADDITIONAL) are in the
kres.section
table.
The internal API usually works with domain names in label format, you can convert between text and wire freely.
local dname = kres.str2dname('business.se')
local strname = kres.dname2str(dname)
Resource records are stored as tables.
local rr = { owner = kres.str2dname('owner'),
ttl = 0,
class = kres.class.IN,
type = kres.type.CNAME,
rdata = kres.str2dname('someplace') }
print(kres.rr2str(rr))
RRSets in packet can be accessed using FFI, you can easily fetch single records.
local rrset = { ... }
local rr = rrset:get(0) -- Return first RR
print(kres.dname2str(rr:owner()))
print(rr:ttl())
print(kres.rr2str(rr))
Packet is the data structure that you're going to see in layers very often. They consists of a header, and four sections: QUESTION, ANSWER, AUTHORITY, ADDITIONAL. The first section is special, as it contains the query name, type, and class; the rest of the sections contain RRSets.
First you need to convert it to a type known to FFI and check basic properties. Let's start with a snippet of a consume layer.
consume = function (state, req, pkt)
print('rcode:', pkt:rcode())
print('query:', kres.dname2str(pkt:qname()), pkt:qclass(), pkt:qtype())
if pkt:rcode() ~= kres.rcode.NOERROR then
print('error response')
end
end
You can enumerate records in the sections.
local records = pkt:section(kres.section.ANSWER)
for i = 1, #records do
local rr = records[i]
if rr.type == kres.type.AAAA then
print(kres.rr2str(rr))
end
end
During produce or begin, you might want to want to write to packet. Keep in mind that you have to write packet sections in sequence, e.g. you can't write to ANSWER after writing AUTHORITY, it's like stages where you can't go back.
pkt:rcode(kres.rcode.NXDOMAIN)
-- Clear answer and write QUESTION
pkt:recycle()
pkt:question('\7blocked', kres.class.IN, kres.type.SOA)
-- Start writing data
pkt:begin(kres.section.ANSWER)
-- Nothing in answer
pkt:begin(kres.section.AUTHORITY)
local soa = { owner = '\7blocked', ttl = 900, class = kres.class.IN, type = kres.type.SOA, rdata = '...' }
pkt:put(soa.owner, soa.ttl, soa.class, soa.type, soa.rdata)
The request holds information about currently processed query, enabled options, cache, and other extra data. You primarily need to retrieve currently processed query.
consume = function (state, req, pkt)
print(req.options)
print(req.state)
-- Print information about current query
local current = req:current()
print(kres.dname2str(current.owner))
print(current.stype, current.sclass, current.id, current.flags)
end
In layers that either begin or finalize, you can walk the list of resolved queries.
local last = req:resolved()
print(last.stype)
As described in the layers, you can not only retrieve information about current query, but also push new ones or pop old ones.
-- Push new query
local qry = req:push(pkt:qname(), kres.type.SOA, kres.class.IN)
qry.flags.AWAIT_CUT = true
-- Pop the query, this will erase it from resolution plan
req:pop(qry)
In the main kres.*
lua binding, there was only change in struct knot_rrset_t:
- constructor now accepts TTL as additional parameter (defaulting to zero)
- add_rdata() doesn't accept TTL anymore (and will throw an error if passed)
In case you used knot_* functions and structures bound to lua:
- knot_dname_is_sub(a, b): knot_dname_in_bailiwick(a, b) > 0
- knot_rdata_rdlen(): knot_rdataset_at().len
- knot_rdata_data(): knot_rdataset_at().data
- knot_rdata_array_size(): offsetof(struct knot_data_t, data) + knot_rdataset_at().len
- struct knot_rdataset: field names were renamed to .count and .rdata
- some functions got inlined from headers, but you can use their kr_* clones: kr_rrsig_sig_inception(), kr_rrsig_sig_expiration(), kr_rrsig_type_covered(). Note that these functions now accept knot_rdata_t* instead of a pair knot_rdataset_t* and size_t - you can use knot_rdataset_at() for that.
- knot_rrset_add_rdata() doesn't take TTL parameter anymore
- knot_rrset_init_empty() was inlined, but in lua you can use the constructor
- knot_rrset_ttl() was inlined, but in lua you can use :ttl() method instead
- knot_pkt_qname(), _qtype(), _qclass(), _rr(), _section() were inlined, but in lua you can use methods instead, e.g. myPacket:qname()
- knot_pkt_free() takes knot_pkt_t* instead of knot_pkt_t**, but from lua you probably didn't want to use that; constructor ensures garbage collection.