This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
398 lines (370 loc) · 12.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import time
import copy
import math
import argparse
import random
import torch
import torch.optim as optim
import data
import distributed
from models import (
compressive,
expire_span,
feedback,
transformer_seq,
staircase,
)
from modules import adaptive_span
from trainer import train
from utils.logger import Logger
import utils.checkpoint as checkpoint
def get_parser():
parser = argparse.ArgumentParser()
# model related
parser.add_argument("--hid-sz", type=int, default=256, help="hidden size")
parser.add_argument(
"--inner-hid-sz", type=int, default=1024, help="inner hidden size of FF layer"
)
parser.add_argument("--nlayers", type=int, default=8, help="number of layers")
parser.add_argument("--mem-sz", type=int, default=64, help="memory size")
parser.add_argument(
"--nheads", type=int, default=2, help="number of attention heads"
)
parser.add_argument(
"--dropout", type=float, default=0.2, help="dropout rate of ReLU and attention"
)
parser.add_argument(
"--compress",
action="store_true",
default=False,
help="use the compressive transformer",
)
parser.add_argument(
"--feedback",
action="store_true",
default=False,
help="use the feedback transformer, computing one step at a time like RNNs",
)
parser.add_argument(
"--expire-span",
action="store_true",
default=False,
help="compute expiration span for each memory",
)
parser.add_argument(
"--staircase",
action="store_true",
default=False,
help="use the staircase transformer",
)
# optimization related
parser.add_argument("--lr", type=float, default=0.03, help="learning rate")
parser.add_argument("--momentum", type=float, default=0.9, help="SGD momentum")
parser.add_argument("--batch-sz", type=int, default=64, help="batch size")
parser.add_argument(
"--test-batch-sz",
type=int,
default=0,
help="set different batch size for test and val data if greater than 0",
)
parser.add_argument(
"--nbatches", type=int, default=1000, help="number of batches in each epoch"
)
parser.add_argument(
"--nepochs", type=int, default=1000, help="number of epochs to train"
)
parser.add_argument(
"--optim",
type=str,
default="sgd",
choices=("sgd", "adam"),
help="optimization method",
)
parser.add_argument(
"--lr-warmup",
type=int,
default=0,
help="linearly increase LR from 0 during K updates",
)
parser.add_argument(
"--lr-decay",
action="store_true",
default=False,
help="decay learning rate with cosine scheduler",
)
parser.add_argument(
"--grad-clip", type=float, default=0, help="clip gradient value",
)
parser.add_argument(
"--split-batch",
type=int,
default=1,
help="split batches into smaller pieces so it can fit in memory",
)
# data related
parser.add_argument(
"--data", type=str, help="data file location", required=True,
)
parser.add_argument(
"--data-type",
type=str,
default="char",
choices=["char", "word"],
help="data type",
)
parser.add_argument(
"--data-eos",
action="store_true",
default=False,
help="include the end-of-line as as token",
)
parser.add_argument(
"--data-omit-labels",
nargs="+",
type=str,
default=[],
help="do not train on those labels",
)
# plotting
parser.add_argument(
"--plot", action="store_true", default=False, help="plot in tensorboard"
)
parser.add_argument(
"--plot-dir", type=str, default="tensorboard_runs", help="tensorboard log dir",
)
parser.add_argument(
"--plot-name",
type=str,
default="",
help="tensorboard log name (default: datetime)",
)
# misc
parser.add_argument(
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
)
parser.add_argument(
"--checkpoint", type=str, default="", help="path to save/load model"
)
parser.add_argument(
"--checkpoint-freq", type=int, default=0, help="how often to keep a copy"
)
parser.add_argument(
"--full-test",
action="store_true",
default=False,
help="do testing on whole data",
)
parser.add_argument(
"--full-valid",
action="store_true",
default=False,
help="do validation on whole data (during training)",
)
parser.add_argument(
"--lazy-load-data",
action="store_true",
default=False,
help="moves data to GPU one sample at a time",
)
transformer_seq.add_args(parser)
distributed.add_args(parser)
adaptive_span.add_args(parser)
compressive.add_args(parser)
expire_span.add_args(parser)
feedback.add_args(parser)
staircase.add_args(parser)
return parser
def update_args(args):
if args.head_dim == 0:
assert args.hid_sz % args.nheads == 0
args.head_dim = args.hid_sz // args.nheads
args.update_freq = args.split_batch
if args.split_batch > 1:
assert args.batch_sz % args.split_batch == 0
assert args.test_batch_sz % args.split_batch == 0
args.batch_sz = args.batch_sz // args.split_batch
args.test_batch_sz = args.test_batch_sz // args.split_batch
args.nbatches *= args.split_batch
args.lr_warmup *= args.split_batch
if args.plot and args.plot_name == "":
args.plot_name = time.strftime("%Y%m%d_%H%M%S")
if args.test_batch_sz == 0:
args.test_batch_sz = args.batch_sz
def main(args):
args = copy.deepcopy(args)
use_cuda = not args.no_cuda and torch.cuda.is_available()
update_args(args)
distributed.init(args)
args.device = torch.device("cuda" if use_cuda else "cpu")
logger = Logger(args)
logger.print(f"PyTorch version: {torch.__version__}")
logger.print(f"PyTorch CUDA version: {torch.version.cuda}")
logger.print(str(args))
# load data
train_data, val_data, test_data, corpus = data.get_data(args, logger, args.data_eos)
if len(args.data_omit_labels) > 0:
args.data_omit_label_idx = [
corpus.dictionary.word2idx[w] for w in args.data_omit_labels
]
else:
args.data_omit_label_idx = None
# create a model
if args.feedback:
model = feedback.FeedbackTransformer(args)
elif args.expire_span:
model = expire_span.ExpireSpan(args)
elif args.compress:
model = compressive.CompressiveTransformer(args)
elif args.staircase:
model = staircase.StaircaseModel(args)
else:
model = transformer_seq.TransformerSeq(args)
model.to(args.device)
# count params
nparameters = 0
params = []
for param in model.parameters():
if param.requires_grad:
nparameters += param.numel()
params.append(param)
logger.print("nparameters={:.2f}M".format(nparameters / 1e6))
# OPTIM param
if args.optim == "sgd":
optimizer = optim.SGD(params, lr=args.lr, momentum=args.momentum)
elif args.optim == "adam":
optimizer = optim.Adam(params, lr=args.lr)
if args.lr_decay:
# will do warm-up manually later
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer, args.nepochs * args.nbatches
)
elif args.lr_warmup > 0:
scheduler = optim.lr_scheduler.LambdaLR(
optimizer, lambda ep: min(1, ep / args.lr_warmup)
)
else:
scheduler = None
model = distributed.wrap_model(args, model)
ep_init = checkpoint.load(args, model, optimizer, logger, scheduler)
# pos: data samling 0=sequential, -1=random
pos = [0 for _ in range(3)]
if isinstance(train_data, tuple):
pos[0] = random.randrange(train_data[0].size(1) - args.mem_sz)
else:
pos[0] = random.randrange(train_data.size(1) - args.mem_sz)
hid_cache = [
model.module.init_hid_cache(args.batch_sz),
model.module.init_hid_cache(args.test_batch_sz),
model.module.init_hid_cache(args.test_batch_sz),
]
if args.full_test:
# perform evaluation only
with torch.no_grad():
stat_val, pos[1], hid_cache[1] = train(
args,
model,
optimizer,
scheduler,
val_data,
test_only=True,
train_pos=pos[1],
h_cache=hid_cache[1],
corpus=corpus,
)
stat_test, pos[2], hid_cache[2] = train(
args,
model,
optimizer,
scheduler,
test_data,
test_only=True,
train_pos=pos[2],
h_cache=hid_cache[2],
corpus=corpus,
)
gpu_mem = torch.cuda.max_memory_allocated() / 1024 ** 3
stat_test, stat_val, gpu_mem = distributed.collect_stat(
args, stat_test, stat_val, gpu_mem
)
if args.data_type == "char":
if "err" in stat_val:
logger.print("val err: {:.3f}%".format(stat_val["err"] * 100))
logger.print("test err: {:.3f}%".format(stat_test["err"] * 100))
else:
logger.print(
"val: {:.3f}bpc".format(stat_val["loss"] / math.log(2))
)
logger.print(
"test: {:.3f}bpc".format(stat_test["loss"] / math.log(2))
)
else:
logger.print("val: {:.3f}ppl".format(math.exp(stat_val["loss"])))
logger.print("test: {:.3f}ppl".format(math.exp(stat_test["loss"])))
logger.print(f"gpu_mem: {gpu_mem:.1f}gb")
return
for ep in range(ep_init, args.nepochs):
t_sta = time.time()
args.ep = ep
stat_train, pos[0], hid_cache[0] = train(
args,
model,
optimizer,
scheduler,
train_data,
train_pos=pos[0],
h_cache=hid_cache[0],
corpus=corpus,
)
elapsed = 1000 * (time.time() - t_sta) / args.nbatches
with torch.no_grad():
if args.full_valid:
stat_val, _, _ = train(
args,
model,
optimizer,
scheduler,
val_data,
test_only=True,
train_pos=pos[1],
h_cache=hid_cache[1],
corpus=corpus,
)
else:
stat_val, pos[1], hid_cache[1] = train(
args,
model,
optimizer,
scheduler,
val_data,
test_only=True,
train_pos=pos[1],
h_cache=hid_cache[1],
corpus=corpus,
)
gpu_mem = torch.cuda.max_memory_allocated() / 1024 ** 3
torch.cuda.reset_max_memory_allocated()
stat_train, stat_val, gpu_mem = distributed.collect_stat(
args, stat_train, stat_val, gpu_mem
)
if args.rank == 0:
# only the master process will do logging, plotting and checkpoint
if args.lr_decay:
logger.log("compute/lr", optimizer.param_groups[0]["lr"])
if args.adapt_span:
adaptive_span.log(args, model, logger, stat_train)
if args.expire_span:
expire_span.log(args, model, logger, stat_train)
if args.feedback:
feedback.log(args, model, logger, stat_train)
logger.step(args, stat_train, stat_val, elapsed, gpu_mem)
checkpoint.save(args, model, optimizer, logger, scheduler)
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(args)