Skip to content
This repository has been archived by the owner on Oct 31, 2023. It is now read-only.

ImportError: cannot import name 'FastRCNNOutputs' #44

Open
CauchyFood opened this issue Sep 10, 2021 · 4 comments
Open

ImportError: cannot import name 'FastRCNNOutputs' #44

CauchyFood opened this issue Sep 10, 2021 · 4 comments

Comments

@CauchyFood
Copy link

The detectron2.modeling.roi_heads.fast_rcnn have no FastRCNNOutputs for the ubteacher/modeling/roi_heads/fast_rcnn.py
ImportError: cannot import name 'FastRCNNOutputs'
Can you help me to resolve this question? Thank you so much!

@ycliu93
Copy link
Contributor

ycliu93 commented Sep 10, 2021

Thanks for reporting this issue. The reason is detectron2 change its codebase, while ours is older one.
facebookresearch/detectron2@11528ce

A simple fix is to add an older version of the FastRCNNOutputs class back to the file.
Just add the following to ubteacher/modeling/roi_heads/fast_rcnn.py.

class FastRCNNOutputs:
    """
    An internal implementation that stores information about outputs of a Fast R-CNN head,
    and provides methods that are used to decode the outputs of a Fast R-CNN head.
    """

    def __init__(
        self,
        box2box_transform,
        pred_class_logits,
        pred_proposal_deltas,
        proposals,
        smooth_l1_beta=0.0,
        box_reg_loss_type="smooth_l1",
    ):
        """
        Args:
            box2box_transform (Box2BoxTransform/Box2BoxTransformRotated):
                box2box transform instance for proposal-to-detection transformations.
            pred_class_logits (Tensor): A tensor of shape (R, K + 1) storing the predicted class
                logits for all R predicted object instances.
                Each row corresponds to a predicted object instance.
            pred_proposal_deltas (Tensor): A tensor of shape (R, K * B) or (R, B) for
                class-specific or class-agnostic regression. It stores the predicted deltas that
                transform proposals into final box detections.
                B is the box dimension (4 or 5).
                When B is 4, each row is [dx, dy, dw, dh (, ....)].
                When B is 5, each row is [dx, dy, dw, dh, da (, ....)].
            proposals (list[Instances]): A list of N Instances, where Instances i stores the
                proposals for image i, in the field "proposal_boxes".
                When training, each Instances must have ground-truth labels
                stored in the field "gt_classes" and "gt_boxes".
                The total number of all instances must be equal to R.
            smooth_l1_beta (float): The transition point between L1 and L2 loss in
                the smooth L1 loss function. When set to 0, the loss becomes L1. When
                set to +inf, the loss becomes constant 0.
            box_reg_loss_type (str): Box regression loss type. One of: "smooth_l1", "giou"
        """
        self.box2box_transform = box2box_transform
        self.num_preds_per_image = [len(p) for p in proposals]
        self.pred_class_logits = pred_class_logits
        self.pred_proposal_deltas = pred_proposal_deltas
        self.smooth_l1_beta = smooth_l1_beta
        self.box_reg_loss_type = box_reg_loss_type

        self.image_shapes = [x.image_size for x in proposals]

        if len(proposals):
            box_type = type(proposals[0].proposal_boxes)
            # cat(..., dim=0) concatenates over all images in the batch
            self.proposals = box_type.cat([p.proposal_boxes for p in proposals])
            assert (
                not self.proposals.tensor.requires_grad
            ), "Proposals should not require gradients!"

            # "gt_classes" exists if and only if training. But other gt fields may
            # not necessarily exist in training for images that have no groundtruth.
            if proposals[0].has("gt_classes"):
                self.gt_classes = cat([p.gt_classes for p in proposals], dim=0)

                # If "gt_boxes" does not exist, the proposals must be all negative and
                # should not be included in regression loss computation.
                # Here we just use proposal_boxes as an arbitrary placeholder because its
                # value won't be used in self.box_reg_loss().
                gt_boxes = [
                    p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes for p in proposals
                ]
                self.gt_boxes = box_type.cat(gt_boxes)
        else:
            self.proposals = Boxes(torch.zeros(0, 4, device=self.pred_proposal_deltas.device))
        self._no_instances = len(self.proposals) == 0  # no instances found

    def softmax_cross_entropy_loss(self):
        """
        Deprecated
        """
        _log_classification_stats(self.pred_class_logits, self.gt_classes)
        return cross_entropy(self.pred_class_logits, self.gt_classes, reduction="mean")

    def box_reg_loss(self):
        """
        Deprecated
        """
        if self._no_instances:
            return 0.0 * self.pred_proposal_deltas.sum()

        box_dim = self.proposals.tensor.size(1)  # 4 or 5
        cls_agnostic_bbox_reg = self.pred_proposal_deltas.size(1) == box_dim
        device = self.pred_proposal_deltas.device

        bg_class_ind = self.pred_class_logits.shape[1] - 1
        # Box delta loss is only computed between the prediction for the gt class k
        # (if 0 <= k < bg_class_ind) and the target; there is no loss defined on predictions
        # for non-gt classes and background.
        # Empty fg_inds should produce a valid loss of zero because reduction=sum.
        fg_inds = nonzero_tuple((self.gt_classes >= 0) & (self.gt_classes < bg_class_ind))[0]

        if cls_agnostic_bbox_reg:
            # pred_proposal_deltas only corresponds to foreground class for agnostic
            gt_class_cols = torch.arange(box_dim, device=device)
        else:
            # pred_proposal_deltas for class k are located in columns [b * k : b * k + b],
            # where b is the dimension of box representation (4 or 5)
            # Note that compared to Detectron1,
            # we do not perform bounding box regression for background classes.
            gt_class_cols = box_dim * self.gt_classes[fg_inds, None] + torch.arange(
                box_dim, device=device
            )

        if self.box_reg_loss_type == "smooth_l1":
            gt_proposal_deltas = self.box2box_transform.get_deltas(
                self.proposals.tensor, self.gt_boxes.tensor
            )
            loss_box_reg = smooth_l1_loss(
                self.pred_proposal_deltas[fg_inds[:, None], gt_class_cols],
                gt_proposal_deltas[fg_inds],
                self.smooth_l1_beta,
                reduction="sum",
            )
        elif self.box_reg_loss_type == "giou":
            fg_pred_boxes = self.box2box_transform.apply_deltas(
                self.pred_proposal_deltas[fg_inds[:, None], gt_class_cols],
                self.proposals.tensor[fg_inds],
            )
            loss_box_reg = giou_loss(
                fg_pred_boxes,
                self.gt_boxes.tensor[fg_inds],
                reduction="sum",
            )
        else:
            raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")

        loss_box_reg = loss_box_reg / self.gt_classes.numel()
        return loss_box_reg

    def losses(self):
        """
        Deprecated
        """
        return {"loss_cls": self.softmax_cross_entropy_loss(), "loss_box_reg": self.box_reg_loss()}

    def predict_boxes(self):
        """
        Deprecated
        """
        pred = self.box2box_transform.apply_deltas(self.pred_proposal_deltas, self.proposals.tensor)
        return pred.split(self.num_preds_per_image, dim=0)

    def predict_probs(self):
        """
        Deprecated
        """
        probs = F.softmax(self.pred_class_logits, dim=-1)
        return probs.split(self.num_preds_per_image, dim=0)

I will rebase unbiased teacher and adapt to the newer version detectron2 recently. Thanks!

@CauchyFood
Copy link
Author

Thank you so much for you answer my question.
This bug can be fixed by FastRCNNOutputs added to the ubteacher/modeling/roi_heads/fast_rcnn.py..
In addition, these import should be added in the ubteacher/modeling/roi_heads/fast_rcnn.py.

from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple
from fvcore.nn import giou_loss, smooth_l1_loss
from detectron2.modeling.box_regression import Box2BoxTransform
from detectron2.structures import Boxes

@gustavsma
Copy link

Another option could be using detectron2 version where FastRCNNOutputs is still present.

I installed version v0.5 and no longer get the error.
python -m pip install 'git+https://github.com/facebookresearch/[email protected]'

@leoliu37
Copy link

older version of the FastRCNNOutputs class back to the file.
Just add the following

This is the problem of detecron2 version, I solve it by installing suitable version in https://github.com/facebookresearch/detectron2/releases

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants