forked from kujason/avod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_anchors.py
147 lines (110 loc) · 4.72 KB
/
generate_anchors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import time
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
from PIL import Image
from wavedata.tools.core import calib_utils
from wavedata.tools.visualization import vis_utils
from avod.builders.dataset_builder import DatasetBuilder
from avod.core import anchor_projector
from avod.core import box_3d_encoder
from avod.core.anchor_generators import grid_anchor_3d_generator
from avod.core.label_cluster_utils import LabelClusterUtils
def main():
"""
Visualization of 3D grid anchor generation, showing 2D projections
in BEV and image space, and a 3D display of the anchors
"""
dataset_config = DatasetBuilder.copy_config(
DatasetBuilder.KITTI_TRAIN)
dataset_config.num_clusters[0] = 1
dataset = DatasetBuilder.build_kitti_dataset(dataset_config)
label_cluster_utils = LabelClusterUtils(dataset)
clusters, _ = label_cluster_utils.get_clusters()
# Options
img_idx = 1
# fake_clusters = np.array([[5, 4, 3], [6, 5, 4]])
# fake_clusters = np.array([[3, 3, 3], [4, 4, 4]])
fake_clusters = np.array([[4, 2, 3]])
fake_anchor_stride = [5.0, 5.0]
ground_plane = [0, -1, 0, 1.72]
anchor_3d_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()
area_extents = np.array([[-40, 40], [-5, 5], [0, 70]])
# Generate anchors for cars only
start_time = time.time()
anchor_boxes_3d = anchor_3d_generator.generate(
area_3d=dataset.kitti_utils.area_extents,
anchor_3d_sizes=fake_clusters,
anchor_stride=fake_anchor_stride,
ground_plane=ground_plane)
all_anchors = box_3d_encoder.box_3d_to_anchor(anchor_boxes_3d)
end_time = time.time()
print("Anchors generated in {} s".format(end_time - start_time))
# Project into bev
bev_boxes, bev_normalized_boxes = \
anchor_projector.project_to_bev(all_anchors, area_extents[[0, 2]])
bev_fig, (bev_axes, bev_normalized_axes) = \
plt.subplots(1, 2, figsize=(16, 7))
bev_axes.set_xlim(0, 80)
bev_axes.set_ylim(70, 0)
bev_normalized_axes.set_xlim(0, 1.0)
bev_normalized_axes.set_ylim(1, 0.0)
plt.show(block=False)
for box in bev_boxes:
box_w = box[2] - box[0]
box_h = box[3] - box[1]
rect = patches.Rectangle((box[0], box[1]),
box_w, box_h,
linewidth=2,
edgecolor='b',
facecolor='none')
bev_axes.add_patch(rect)
for normalized_box in bev_normalized_boxes:
box_w = normalized_box[2] - normalized_box[0]
box_h = normalized_box[3] - normalized_box[1]
rect = patches.Rectangle((normalized_box[0], normalized_box[1]),
box_w, box_h,
linewidth=2,
edgecolor='b',
facecolor='none')
bev_normalized_axes.add_patch(rect)
rgb_fig, rgb_2d_axes, rgb_3d_axes = \
vis_utils.visualization(dataset.rgb_image_dir, img_idx)
plt.show(block=False)
image_path = dataset.get_rgb_image_path(dataset.sample_names[img_idx])
image_shape = np.array(Image.open(image_path)).shape
stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir,
img_idx).p2
start_time = time.time()
rgb_boxes, rgb_normalized_boxes = \
anchor_projector.project_to_image_space(all_anchors,
stereo_calib_p2,
image_shape)
end_time = time.time()
print("Anchors projected in {} s".format(end_time - start_time))
# Read the stereo calibration matrix for visualization
stereo_calib = calib_utils.read_calibration(dataset.calib_dir, 0)
p = stereo_calib.p2
# Overlay boxes on images
for anchor_idx in range(len(anchor_boxes_3d)):
anchor_box_3d = anchor_boxes_3d[anchor_idx]
obj_label = box_3d_encoder.box_3d_to_object_label(anchor_box_3d)
# Draw 3D boxes
vis_utils.draw_box_3d(rgb_3d_axes, obj_label, p)
# Draw 2D boxes
rgb_box_2d = rgb_boxes[anchor_idx]
box_x1 = rgb_box_2d[0]
box_y1 = rgb_box_2d[1]
box_w = rgb_box_2d[2] - box_x1
box_h = rgb_box_2d[3] - box_y1
rect = patches.Rectangle((box_x1, box_y1),
box_w, box_h,
linewidth=2,
edgecolor='b',
facecolor='none')
rgb_2d_axes.add_patch(rect)
if anchor_idx % 32 == 0:
rgb_fig.canvas.draw()
plt.show(block=True)
if __name__ == '__main__':
main()