forked from jorgecasas/php-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDBSCANTest.php
96 lines (75 loc) · 2.36 KB
/
DBSCANTest.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
<?php
declare(strict_types=1);
namespace Phpml\Tests\Clustering;
use Phpml\Clustering\DBSCAN;
use PHPUnit\Framework\TestCase;
class DBSCANTest extends TestCase
{
public function testDBSCANSamplesClustering(): void
{
$samples = [[1, 1], [8, 7], [1, 2], [7, 8], [2, 1], [8, 9]];
$clustered = [
[[1, 1], [1, 2], [2, 1]],
[[8, 7], [7, 8], [8, 9]],
];
$dbscan = new DBSCAN($epsilon = 2, $minSamples = 3);
self::assertEquals($clustered, $dbscan->cluster($samples));
$samples = [[1, 1], [6, 6], [1, -1], [5, 6], [-1, -1], [7, 8], [-1, 1], [7, 7]];
$clustered = [
[[1, 1], [1, -1], [-1, -1], [-1, 1]],
[[6, 6], [5, 6], [7, 8], [7, 7]],
];
$dbscan = new DBSCAN($epsilon = 3, $minSamples = 4);
self::assertEquals($clustered, $dbscan->cluster($samples));
}
public function testDBSCANSamplesClusteringAssociative(): void
{
$samples = [
'a' => [1, 1],
'b' => [9, 9],
'c' => [1, 2],
'd' => [9, 8],
'e' => [7, 7],
'f' => [8, 7],
];
$clustered = [
[
'a' => [1, 1],
'c' => [1, 2],
],
[
'b' => [9, 9],
'd' => [9, 8],
'e' => [7, 7],
'f' => [8, 7],
],
];
$dbscan = new DBSCAN($epsilon = 3, $minSamples = 2);
self::assertEquals($clustered, $dbscan->cluster($samples));
}
public function testClusterEpsilonSmall(): void
{
$samples = [[0], [1], [2]];
$clustered = [
];
$dbscan = new DBSCAN($epsilon = 0.5, $minSamples = 2);
self::assertEquals($clustered, $dbscan->cluster($samples));
}
public function testClusterEpsilonBoundary(): void
{
$samples = [[0], [1], [2]];
$clustered = [
];
$dbscan = new DBSCAN($epsilon = 1.0, $minSamples = 2);
self::assertEquals($clustered, $dbscan->cluster($samples));
}
public function testClusterEpsilonLarge(): void
{
$samples = [[0], [1], [2]];
$clustered = [
[[0], [1], [2]],
];
$dbscan = new DBSCAN($epsilon = 1.5, $minSamples = 2);
self::assertEquals($clustered, $dbscan->cluster($samples));
}
}