forked from MachineLP/TextMatch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
80 lines (72 loc) · 2.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
"""
Created on 2017 10.17
@author: liupeng
wechat: lp9628
blog: http://blog.csdn.net/u014365862/article/details/78422372
"""
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
import numpy as np
import argparse
import os
from PIL import Image
from datetime import datetime
import math
import time
from load_image import load_image
try:
from train import train
except:
from train_net.train import train
import cv2
import os
from keras.utils import np_utils
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import config
if __name__ == '__main__':
IMAGE_HEIGHT = config.IMAGE_HEIGHT
IMAGE_WIDTH = config.IMAGE_WIDTH
num_classes = config.num_classes
EARLY_STOP_PATIENCE = config.EARLY_STOP_PATIENCE
# epoch
epoch = config.epoch
batch_size = config.batch_size
# 模型的学习率
learning_rate = config.learning_rate
keep_prob = config.keep_prob
##----------------------------------------------------------------------------##
# 设置训练样本的占总样本的比例:
train_rate = config.train_rate
# 每个类别保存到一个文件中,放在此目录下,只要是二级目录就可以。
craterDir = config.craterDir
# 选择需要的模型
# arch_model="arch_inception_v4"; arch_model="arch_resnet_v2_50"; arch_model="vgg_16"
arch_model=config.arch_model
# 设置要更新的参数和加载的参数,目前是非此即彼,可以自己修改哦
checkpoint_exclude_scopes = config.checkpoint_exclude_scopes
# 迁移学习模型参数
checkpoint_path=config.checkpoint_path
##----------------------------------------------------------------------------##
print ("-----------------------------load_image.py start--------------------------")
# 准备训练数据
all_image = load_image.load_image(craterDir, train_rate)
train_data, train_label, valid_data, valid_label= all_image.gen_train_valid_image()
image_n = all_image.image_n
# 样本的总数量
print ("样本的总数量:")
print (image_n)
# 定义90%作为训练样本
train_n = all_image.train_n
valid_n = all_image.valid_n
# ont-hot
train_label = np_utils.to_categorical(train_label, num_classes)
valid_label = np_utils.to_categorical(valid_label, num_classes)
if not os.path.isdir('model'):
os.makedirs('model')
##----------------------------------------------------------------------------##
print ("-----------------------------train.py start--------------------------")
train(train_data,train_label,valid_data,valid_label,train_n,valid_n,IMAGE_HEIGHT,IMAGE_WIDTH,learning_rate,num_classes,epoch,EARLY_STOP_PATIENCE,batch_size,keep_prob,
arch_model, checkpoint_exclude_scopes, checkpoint_path)