forked from benjjneb/dada2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdada.R
667 lines (633 loc) · 30.5 KB
/
dada.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
dada_opts <- new.env()
assign("OMEGA_A", 1e-40, envir = dada_opts)
assign("OMEGA_P", 1e-4, envir = dada_opts)
assign("OMEGA_C", 1e-40, envir=dada_opts)
assign("DETECT_SINGLETONS", FALSE, envir=dada_opts)
assign("USE_KMERS", TRUE, envir = dada_opts)
assign("KDIST_CUTOFF", 0.42, envir = dada_opts)
assign("MAX_CONSIST", 10, envir = dada_opts)
#assign("SCORE_MATRIX", matrix(c(5L, -4L, -4L, -4L, -4L, 5L, -4L, -4L, -4L, -4L, 5L, -4L, -4L, -4L, -4L, 5L),
# nrow=4, byrow=TRUE), envir = dada_opts)
assign("MATCH", 5L, envir = dada_opts)
assign("MISMATCH", -4L, envir = dada_opts)
assign("GAP_PENALTY", -8L, envir = dada_opts)
assign("BAND_SIZE", 16, envir = dada_opts)
assign("VECTORIZED_ALIGNMENT", TRUE, envir = dada_opts)
assign("MAX_CLUST", 0, envir=dada_opts)
assign("MIN_FOLD", 1, envir=dada_opts)
assign("MIN_HAMMING", 1, envir=dada_opts)
assign("MIN_ABUNDANCE", 1, envir=dada_opts)
assign("USE_QUALS", TRUE, envir=dada_opts)
assign("HOMOPOLYMER_GAP_PENALTY", NULL, envir = dada_opts)
assign("SSE", 2, envir = dada_opts)
assign("GAPLESS", TRUE, envir=dada_opts)
assign("GREEDY", TRUE, envir=dada_opts)
assign("PSEUDO_PREVALENCE", 2, envir=dada_opts)
assign("PSEUDO_ABUNDANCE", Inf, envir=dada_opts)
# assign("FINAL_CONSENSUS", FALSE, envir=dada_opts) # NON-FUNCTIONAL AT THE MOMENT
#' High resolution sample inference from amplicon data.
#'
#' The dada function takes as input dereplicated amplicon sequencing reads and returns the inferred composition
#' of the sample (or samples). Put another way, dada removes all sequencing errors to reveal the members of the
#' sequenced community.
#'
#' If dada is run in selfConsist=TRUE mode, the algorithm will infer both the sample composition and
#' the parameters of its error model from the data.
#'
#' @param derep (Required). \code{character} or \code{\link{derep-class}}.
#' The file path(s) to the fastq file(s), or a directory containing fastq file(s) corresponding to the
#' the samples to be denoised. Compressed file formats such as .fastq.gz and .fastq.bz2 are supported.
#' A \code{\link{derep-class}} object (or list thereof) returned by \code{link{derepFastq}} can also be provided.
#' If multiple samples are provided, each will be denoised with a shared error model.
#'
#' @param err (Required). 16xN numeric matrix, or an object coercible by \code{\link{getErrors}}
#' such as the output of the \code{\link{learnErrors}} function.
#'
#' The matrix of estimated rates for each possible nucleotide transition (from sample nucleotide to read nucleotide).
#' Rows correspond to the 16 possible transitions (t_ij) indexed such that 1:A->A, 2:A->C, ..., 16:T->T
#' Columns correspond to quality scores. Each entry must be between 0 and 1.
#'
#' Typically there are 41 columns for the quality scores 0-40.
#' However, if USE_QUALS=FALSE, the matrix must have only one column.
#'
#' If selfConsist = TRUE, \code{err} can be set to NULL and an initial error matrix will be estimated from the data
#' by assuming that all reads are errors away from one true sequence.
#'
#' @param errorEstimationFunction (Optional). Function. Default \code{\link{loessErrfun}}.
#'
#' If USE_QUALS = TRUE, \code{errorEstimationFunction(dada()$trans_out)} is computed after sample inference,
#' and the return value is used as the new estimate of the err matrix in $err_out.
#'
#' If USE_QUALS = FALSE, this argument is ignored, and transition rates are estimated by maximum likelihood (t_ij = n_ij/n_i).
#'
#' @param selfConsist (Optional). \code{logical(1)}. Default FALSE.
#'
#' If selfConsist = TRUE, the algorithm will alternate between sample inference and error rate estimation
#' until convergence. Error rate estimation is performed by \code{errorEstimationFunction}.
#'
#' If selfConsist=FALSE the algorithm performs one round of sample inference based on the provided \code{err} matrix.
#'
#' @param pool (Optional). \code{logical(1)}. Default is FALSE.
#'
#' If pool = TRUE, the algorithm will pool together all samples prior to sample inference.
#' If pool = FALSE, sample inference is performed on each sample individually.
#' If pool = "pseudo", the algorithm will perform pseudo-pooling between individually processed samples.
#'
#' This argument has no effect if only 1 sample is provided, and \code{pool} does not affect
#' error rates, which are always estimated from pooled observations across samples.
#'
#' @param priors (Optional). \code{character}. Default is character(0), i.e. no prior sequences.
#'
#' The priors argument provides a set of sequences for which there is prior information suggesting they may
#' truly exist, i.e. are not errors. The abundance p-value of dereplicated sequences that exactly match one
#' of the priors are calculated without conditioning on presence, allowing singletons to be detected,
#' and are compared to a reduced threshold `OMEGA_P` when forming new partitions.
#'
#' @param multithread (Optional). Default is FALSE.
#' If TRUE, multithreading is enabled and the number of available threads is automatically determined.
#' If an integer is provided, the number of threads to use is set by passing the argument on to
#' \code{\link{setThreadOptions}}.
#'
#' @param verbose (Optional). Default TRUE.
#' Print verbose text output. More fine-grained control is available by providing an integer argument.
#' \itemize{
#' \item{0: Silence. No text output (same as FALSE). }
#' \item{1: Basic text output (same as TRUE). }
#' \item{2: Detailed text output, mostly intended for debugging. }
#' }
#'
#' @param ... (Optional). All dada_opts can be passed in as arguments to the dada() function.
#' See \code{\link{setDadaOpt}} for a full list and description of these options.
#'
#' @return A \code{\link{dada-class}} object or list of such objects if a list of dereps was provided.
#'
#' @details
#'
#' Briefly, \code{dada} implements a statistical test for the notion that a specific sequence was seen too many times
#' to have been caused by amplicon errors from currently inferred sample sequences. Overly-abundant
#' sequences are used as the seeds of new partitions of sequencing reads, and the final set of partitions
#' is taken to represent the denoised composition of the sample. A more detailed explanation of the algorithm
#' is found in two publications:
#'
#' \itemize{
#' \item{Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016). DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-3.}
#' \item{Rosen MJ, Callahan BJ, Fisher DS, Holmes SP (2012). Denoising PCR-amplified metagenome data. BMC bioinformatics, 13(1), 283.}
#' }
#'
#' \code{dada} depends on a parametric error model of substitutions. Thus the quality of its sample inference is affected
#' by the accuracy of the estimated error rates. \code{selfConsist} mode allows these error rates to be inferred
#' from the data.
#'
#' All comparisons between sequences performed by \code{dada} depend on pairwise alignments. This step is the most
#' computationally intensive part of the algorithm, and two alignment heuristics have been implemented for speed:
#' A kmer-distance screen and banded Needleman-Wunsch alignmemt. See \code{\link{setDadaOpt}}.
#'
#' @seealso
#' \code{\link{derepFastq}}, \code{\link{setDadaOpt}}
#'
#' @importFrom RcppParallel RcppParallelLibs
#' @importFrom RcppParallel setThreadOptions
#' @importFrom methods as
#'
#' @export
#'
#' @examples
#' fn1 <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
#' fn2 <- system.file("extdata", "sam2F.fastq.gz", package="dada2")
#' derep1 = derepFastq(fn1)
#' derep2 = derepFastq(fn2)
#' dada(fn1, err=tperr1)
#' dada(list(sam1=derep1, sam2=derep2), err=tperr1, selfConsist=TRUE)
#' dada(derep1, err=inflateErr(tperr1,3), BAND_SIZE=32, OMEGA_A=1e-20)
#'
dada <- function(derep,
err,
errorEstimationFunction = loessErrfun,
selfConsist = FALSE,
pool = FALSE,
priors = character(0),
multithread = FALSE,
verbose=TRUE, ...) {
call <- sys.call(1)
# Read in default opts and then replace with any that were passed in to the function
opts <- getDadaOpt()
args <- list(...)
for(opnm in names(args)) {
if(opnm %in% names(opts)) {
opts[[opnm]] <- args[[opnm]]
} else {
warning(opnm, " is not a valid DADA option.")
}
}
# Parse verbose
if(is.logical(verbose)) {
if(verbose == FALSE) { verbose <- 0 }
else { verbose <- 1 }
}
# Validate the derep argument. If a single derep object, make into a length 1 list
if(is(derep, "derep")) { derep <- list(derep) }
if(!(is.list.of(derep, "derep") || is(derep, "character"))) { stop("The derep argument must be derep-class object, list of derep-class objects, or a character vector of fastq files or a directory containing fastq files.") }
if(is.character(derep)) {
if(length(derep) == 1 && dir.exists(derep)) { derep <- parseFastqDirectory(derep) }
if(!all(file.exists(derep))) {
stop("Some of the filenames provided do not exist. This may have happened because some samples had zero reads after filtering.")
}
if(is.null(names(derep))) { names(derep) <- basename(derep) } # If unnamed vector of filenames provided
}
# Get prior sequences
priors <- getSequences(priors)
# Pool the derep objects if so indicated
pseudo <- FALSE; pseudo_priors <- character(0)
if(length(derep) <= 1) { pool <- FALSE }
if(is.logical(pool)) {
if(pool) { # Make derep a length 1 list of pooled derep object
derep.in <- getDerep(derep)
derep <- list(combineDereps2(derep.in))
}
} else if(is.character(pool) && pool == "pseudo") {
pool <- FALSE
pseudo <- TRUE
} else { stop("Invalid pool argument.") }
# Validate err matrix
initializeErr <- FALSE
if(selfConsist && (missing(err) || is.null(err))) {
err <- NULL
initializeErr <- TRUE
} else {
err <- getErrors(err, enforce=TRUE)
}
# Validate OMEGA parameters
if(opts$OMEGA_A < 0 || opts$OMEGA_A >= 1) stop("OMEGA_A must be between zero and one.")
if(opts$OMEGA_P < 0 || opts$OMEGA_P >= 1) stop("OMEGA_P must be between zero and one.")
if(opts$OMEGA_P < opts$OMEGA_A && length(priors) > 0) warning("OMEGA_P should generally be larger than OMEGA_A.")
if(opts$OMEGA_C > 1e-10 && selfConsist) warning("Strict error correction (OMEGA_C < 1e-10) is not recommended when learning error rates.")
if(opts$OMEGA_C >= 1 && selfConsist) stop("Some error correction required when learning error rates.")
# Validate errorEstimationFunction
if(!opts$USE_QUALS) {
if(!missing(errorEstimationFunction) && verbose) message("The errorEstimationFunction argument is ignored when USE_QUALS is FALSE.")
errorEstimationFunction <- noqualErrfun # NULL error function has different meaning depending on USE_QUALS
} else {
if(!is.function(errorEstimationFunction)) stop("Must provide a function for errorEstimationFunction.")
}
# Validate alignment parameters
if(opts$GAP_PENALTY>0) opts$GAP_PENALTY = -opts$GAP_PENALTY
if(is.null(opts$HOMOPOLYMER_GAP_PENALTY)) { # Set gap penalties equal
opts$HOMOPOLYMER_GAP_PENALTY <- opts$GAP_PENALTY
}
if(opts$HOMOPOLYMER_GAP_PENALTY > 0) opts$HOMOPOLYMER_GAP_PENALTY = -opts$HOMOPOLYMER_GAP_PENALTY
if(opts$HOMOPOLYMER_GAP_PENALTY != opts$GAP_PENALTY) { # Use homopolymer gapping
opts$VECTORIZED_ALIGNMENT <- FALSE # No homopolymer gapping in vectorized aligner
}
if(opts$VECTORIZED_ALIGNMENT) {
if(opts$BAND_SIZE > 0 && opts$BAND_SIZE<8) {
if(verbose) message("The vectorized aligner is slower for very small band sizes.")
}
if(opts$BAND_SIZE == 0) opts$VECTORIZED_ALIGNMENT=FALSE
}
# Parse multithreading argument
if(is.logical(multithread)) {
if(multithread==TRUE) { RcppParallel::setThreadOptions(numThreads = "auto") }
} else if(is.numeric(multithread)) {
RcppParallel::setThreadOptions(numThreads = multithread)
multithread <- TRUE
} else {
if(verbose) message("Invalid multithread parameter. Running as a single thread.")
multithread <- FALSE
}
# Initialize
cur <- NULL
if(initializeErr) { nconsist <- 0 } else { nconsist <- 1 }
errs <- list()
# The main loop, run once, or repeat until err repeats if selfConsist=T
repeat{
clustering <- list()
clusterquals <- list()
birth_subs <- list()
trans <- list()
map <- list()
pval <- list()
prev <- cur
if(nconsist > 0) errs[[nconsist]] <- err
for(i in seq_along(derep)) {
drpi <- getDerep(derep[[i]])
# Validate dereplicated sequences
if(!all(C_isACGT(names(drpi$uniques)))) {
stop("Invalid derep$uniques vector. Sequences must be made up only of A/C/G/T.")
}
# Validate quals matrix
if(opts$USE_QUALS) {
if(is.null(drpi$quals)) {
stop("The input derep-class object(s) must include quals if USE_QUALS is TRUE.")
}
if(nrow(drpi$quals) != length(drpi$uniques)) {
stop("derep$quals matrices must have one row for each derep$unique sequence.")
}
if(any(sapply(names(drpi$uniques), nchar) > ncol(drpi$quals))) { ###ITS
stop("derep$quals matrices must have as many columns as the length of the derep$unique sequences.")
}
if(any(sapply(seq(nrow(drpi$quals)),
function(row) any(is.na(drpi$quals[row,1:nchar(names(drpi$uniques)[[row]])]))))) { ###ITS
stop("NAs in derep$quals matrix. Check that all input sequences had valid associated qualities assigned.")
}
if(min(drpi$quals, na.rm=TRUE) < 0) {
stop("Invalid derep$quals matrix. Quality values must be positive integers.")
}
qmax <- ceiling(max(drpi$quals, na.rm=TRUE))
if(qmax > 250) { stop("Sample ", i, " has an invalid maximum Phred Quality Scores of ", qmax) }
} else {
qmax <- 0 # For USE_QUALS=FALSE
}
# Initialize error matrix if necessary
if(initializeErr) {
erri <- matrix(1, nrow=16, ncol=max(41,qmax+1))
} else {
erri <- err
}
# Extend the error model if the data has higher quality scores in it than the provided error matrix
if(ncol(erri) < qmax+1) { # qmax = 0 if USE_QUALS = FALSE
if(verbose) {
message("The supplied error matrix does not extend to maximum observed Quality Scores in sample ", i, "(q=", qmax, ").
Extending the error model by repeating the last column of the Error Matrix (column ", ncol(err), ").
In selfConsist mode this should converge to the proper error rates, otherwise this may not be what you want.")
}
for (q in seq(ncol(erri), qmax)) {
erri <- cbind(erri, erri[1:16, q])
colnames(erri)[q+1] <- q
}
}
# Verbose progress reporting
if(nconsist == 1 && verbose) {
if(selfConsist) {
if(i==1) cat("selfConsist step 1 ")
cat(".")
} else if(pool) {
cat(length(derep.in), "samples were pooled:", sum(drpi$uniques), "reads in",
length(drpi$uniques), "unique sequences.\n")
} else {
cat("Sample", i, "-", sum(drpi$uniques), "reads in",
length(drpi$uniques), "unique sequences.\n")
}
} else if(i==1 && verbose) {
if(nconsist == 0) {
cat("Initializing error rates to maximum possible estimate.\n")
} else {
cat("\n selfConsist step", nconsist)
}
}
res <- dada_uniques(names(drpi$uniques), unname(drpi$uniques), names(drpi$uniques) %in% c(priors, pseudo_priors),
erri,
unname(t(drpi$quals)), # Transpose so that sequences are columns
opts[["MATCH"]], opts[["MISMATCH"]], opts[["GAP_PENALTY"]],
opts[["USE_KMERS"]], opts[["KDIST_CUTOFF"]],
opts[["BAND_SIZE"]],
opts[["OMEGA_A"]], opts[["OMEGA_P"]], opts[["OMEGA_C"]], opts[["DETECT_SINGLETONS"]],
if(initializeErr) { 1 } else { opts[["MAX_CLUST"]] },
opts[["MIN_FOLD"]], opts[["MIN_HAMMING"]], opts[["MIN_ABUNDANCE"]],
TRUE, #opts[["USE_QUALS"]],
FALSE,
opts[["VECTORIZED_ALIGNMENT"]],
opts[["HOMOPOLYMER_GAP_PENALTY"]],
multithread,
(verbose>=2),
opts[["SSE"]],
opts[["GAPLESS"]],
opts[["GREEDY"]])
# Augment the returns
res$clustering$sequence <- as.character(res$clustering$sequence)
# List the returns
clustering[[i]] <- res$clustering
clusterquals[[i]] <- t(res$clusterquals) # make sequences rows and positions columns
birth_subs[[i]] <- res$birth_subs
trans[[i]] <- res$subqual
map[[i]] <- res$map
pval[[i]] <- res$pval
rownames(trans[[i]]) <- c("A2A", "A2C", "A2G", "A2T", "C2A", "C2C", "C2G", "C2T", "G2A", "G2C", "G2G", "G2T", "T2A", "T2C", "T2G", "T2T")
colnames(trans[[i]]) <- seq(0, ncol(trans[[i]])-1) # Assumes C sides is returning one col for each integer starting at 0
}
# Accumulate the trans matrix
cur <- accumulateTrans(trans) # The only thing that changes is err(trans), so this is sufficient to determine convergence
# Estimate the new error model (if applicable)
if(is.null(errorEstimationFunction)) {
err <- NULL
} else {
err <- tryCatch(suppressWarnings(errorEstimationFunction(cur)),
error = function(cond) {
if(selfConsist || verbose >= 2) {
message("Error rates could not be estimated (this is usually because of very few reads).")
}
return(NULL)
})
}
if(selfConsist) { # Validate err matrix
temp.var <- getErrors(err, enforce=TRUE); rm("temp.var")
}
if(initializeErr) {
initializeErr <- FALSE
err[c(1,6,11,16),] <- 1.0 # Set self-transitions (A2A, C2C, G2G, T2T) to max of 1
}
# Termination condition for selfConsist loop
if((!selfConsist) || any(sapply(errs, identical, err)) || (nconsist >= opts$MAX_CONSIST)) {
if(!pseudo || (pseudo && nconsist >= 2)) { # If pseudo, must go through first (full) loop to get pseudo priors
break
}
}
# Get pseudo priors
if(pseudo && nconsist >= 1) { # Don't bother if nconsist=0, i.e. max error init
st <- makeSequenceTable(clustering)
pseudo_priors <- colnames(st)[colSums(st>0) >= opts$PSEUDO_PREVALENCE | colSums(st) >= opts$PSEUDO_ABUNDANCE]
rm(st)
}
nconsist <- nconsist+1
} # repeat
if(selfConsist && verbose) {
cat("\n")
if(nconsist >= opts$MAX_CONSIST) {
message("Self-consistency loop terminated before convergence.")
} else {
cat("Convergence after ", nconsist, " rounds.\n")
}
}
# Construct return object
# A single dada-class object if one derep object provided.
# A list of dada-class objects if multiple derep objects provided.
rval2 = replicate(length(derep), list(denoised=NULL, clustering=NULL, sequence=NULL, quality=NULL, birth_subs=NULL, trans=NULL, map=NULL,
err_in=NULL, err_out=NULL, opts=NULL), simplify=FALSE)
for(i in seq_along(derep)) {
rval2[[i]]$denoised <- getUniques(clustering[[i]])
rval2[[i]]$clustering <- clustering[[i]]
rval2[[i]]$sequence <- names(rval2[[i]]$denoised)
rval2[[i]]$quality <- clusterquals[[i]]
rval2[[i]]$birth_subs <- birth_subs[[i]]
rval2[[i]]$trans <- trans[[i]]
rval2[[i]]$map <- map[[i]]
rval2[[i]]$pval <- pval[[i]]
# Return the error rate(s) used as well as the final estimated error matrix
if(selfConsist) { # Did a self-consist loop
rval2[[i]]$err_in <- errs
} else {
rval2[[i]]$err_in <- errs[[1]]
}
rval2[[i]]$err_out <- err
# Store the options that were used in the return object
rval2[[i]]$opts <- opts
}
# If pool=TRUE, expand the rval and prune the individual return objects
if(pool) {
# Expand rval into a list of the proper length
rval1 <- rval2[[1]]
rval2 = replicate(length(derep.in), list(denoised=NULL, clustering=NULL, sequence=NULL, quality=NULL, birth_subs=NULL, trans=NULL, map=NULL,
err_in=NULL, err_out=NULL, opts=NULL), simplify=FALSE)
# Make map named by the pooled unique sequence
map <- map[[1]]
names(map) <- names(derep[[1]]$uniques)
for(i in seq_along(derep.in)) {
rval2[[i]] <- rval1
# Identify which output clusters to keep
keep <- unique(map[names(derep[[1]]$uniques) %in% names(derep.in[[i]]$uniques)])
keep <- seq(length(rval2[[i]]$denoised)) %in% keep # -> logical
newBi <- cumsum(keep) # maps pooled cluster index to individual index
# Prune $denoised, $clustering, $sequence, $quality
rval2[[i]]$denoised <- rval2[[i]]$denoised[keep]
rval2[[i]]$clustering <- rval2[[i]]$clustering[keep,] # Leaves old (char of integer) rownames!
rownames(rval2[[i]]$clustering) <- as.character(newBi[as.integer(rownames(rval2[[i]]$clustering))])
rval2[[i]]$sequence <- rval2[[i]]$sequence[keep]
rval2[[i]]$quality <- rval2[[i]]$quality[keep,,drop=FALSE] # Not the qualities for this sample alone!
# Prune birth_subs and remap its $clust column
rval2[[i]]$birth_subs <- rval2[[i]]$birth_subs[keep[rval2[[i]]$birth_subs$clust],,drop=FALSE]
rval2[[i]]$birth_subs$clust <- newBi[rval2[[i]]$birth_subs$clust]
# Remap $map
rval2[[i]]$map <- newBi[map[names(derep.in[[i]]$uniques)]]
# Would need to add $pval back in here
# Recalculate abundances (both $denoised and $clustering$abundance)
rval2[[i]]$denoised[] <- tapply(derep.in[[i]]$uniques, rval2[[i]]$map, sum)
rval2[[i]]$clustering$abundance <- rval2[[i]]$denoised
}
derep <- derep.in
rm(derep.in)
}
names(rval2) <- names(derep)
if(length(rval2) == 1) { # Unlist if just a single derep object provided
rval2 <- rval2[[1]]
rval2 <- as(rval2, "dada")
} else {
for(i in seq_along(rval2)) {
rval2[[i]] <- as(rval2[[i]], "dada")
}
}
return(rval2)
}
################################################################################
#' Set DADA options
#'
#' setDadaOpt sets the default options used by the dada(...) function for your current session, much
#' like \code{par} sets the session default plotting parameters. However, all dada options can be set as
#' part of the dada(...) function call itself by including a DADA_OPTION_NAME=VALUE argument.
#'
#' @param ... (Required). The DADA options to set, along with their new value.
#'
#' @return NULL.
#'
#' @details
#'
#' **Sensitivity**
#'
#' OMEGA_A: This parameter sets the threshold for when DADA2 calls unique sequences significantly overabundant, and therefore creates a
#' new partition with that sequence as the center. Default is 1e-40, which is a conservative setting to avoid making false
#' positive inferences, but which comes at the cost of reducing the ability to identify some rare variants.
#'
#' OMEGA_P: The threshold for unique sequences with prior evidence of existence (see `priors` argument). Default is 1e-4.
#'
#' OMEGA_C: The threshold at which unique sequences inferred to contain errors are corrected in the final output.
#' The probability that each unique sequence
#' is generated at its observed abundance from the center of its final partition is evaluated, and compared to OMEGA_C. If that
#' probability is >= OMEGA_C, it is "corrected", i.e. replaced by the partition center sequence. The special value of 0 corresponds
#' to correcting all input sequences, and any value > 1 corresponds to performing no correction on sequences found to contain
#' errors. Default is 1e-40 (same as OMEGA_A).
#'
#' DETECT_SINGLETONS: If set to TRUE, this removes the requirement for at least two reads with the same sequences to exist
#' in order for a new ASV to be detected. It also somewhat increases sensitivity to other low abundance sequences as well,
#' e.g. those present in just 2/3/4/... reads. Note, this applies to all unique sequences, not just those supported by
#' prior evidence (see `priors` argument), and so it does make false-positive detections more likely.
#'
#' **Alignment**
#'
#' MATCH: The score of a match in the Needleman-Wunsch alignment. Default is 4.
#'
#' MISMATCH: The score of a mismatch in the Needleman-Wunsch alignment. Default is -5.
#'
#' GAP_PENALTY: The cost of gaps in the Needleman-Wunsch alignment. Default is -8.
#'
#' HOMOPOLYMER_GAP_PENALTY: The cost of gaps in homopolymer regions (>=3 repeated bases). Default is NULL, which causes homopolymer
#' gaps to be treated as normal gaps.
#'
#' BAND_SIZE: When set, banded Needleman-Wunsch alignments are performed. Banding restricts the net cumulative number of insertion
#' of one sequence relative to the other. The default value of BAND_SIZE is 16. If DADA is applied to sequencing technologies with
#' high rates of indels, such as 454 sequencing, the BAND_SIZE parameter should be increased. Setting BAND_SIZE to a negative number
#' turns off banding (i.e. full Needleman-Wunsch).
#'
#' **Sequence Comparison Heuristics**
#'
#' USE_KMERS: If TRUE, a 5-mer distance screen is performed prior to performing each pairwise alignment, and if the 5mer-distance
#' is greater than KDIST_CUTOFF, no alignment is performed. Default is TRUE.
#'
#' KDIST_CUTOFF: The default value of 0.42 was chosen to screen pairs of sequences that differ by >10\%, and was
#' calibrated on Illumina sequenced 16S amplicon data. The assumption is that sequences that differ by such a large
#' amount cannot be linked by amplicon errors (i.e. if you sequence one, you won't get a read of other) and so
#' careful (and costly) alignment is unnecessary.
#'
#' GAPLESS: If TRUE, the ordered kmer identity between pairs of sequences is compared to their unordered
#' overlap. If equal, the optimal alignment is assumed to be gapless. Default is TRUE.
#' Only relevant if USE_KMERS is TRUE.
#'
#' GREEDY: The DADA2 algorithm is not greedy, but a very restricted form of greediness can be turned
#' on via this option. If TRUE, unique sequences with reads less than those expected to be generated
#' by resequencing just the central unique in their partition are "locked" to that partition.
#' Modest (~30\%) speedup, and almost no impact on output. Default is TRUE.
#'
#' **New Partition Conditions**
#'
#' MIN_FOLD: The minimum fold-overabundance for sequences to form new partitions. Default value is 1, which means this
#' criteria is ignored.
#'
#' MIN_HAMMING: The minimum hamming-separation for sequences to form new partitions. Default value is 1, which means this
#' criteria is ignored.
#'
#' MIN_ABUNDANCE: The minimum abundance for unique sequences form new partitions. Default value is 1, which means this
#' criteria is ignored.
#'
#' MAX_CLUST: The maximum number of partitions. Once this many partitions have been created, the algorithm terminates regardless
#' of whether the statistical model suggests more real sequence variants exist. If set to 0 this argument is ignored. Default
#' value is 0.
#'
#' **Self Consistency**
#'
#' MAX_CONSIST: The maximum number of steps when selfConsist=TRUE. If convergence is not reached in MAX_CONSIST steps,
#' the algorithm will terminate with a warning message. Default value is 10.
#'
#' **Pseudo-pooling Behavior**
#'
#' PSEUDO_PREVALENCE: When performing pseudo-pooling, all sequence variants found in at least this many
#' samples are used as priors for a subsequent round of sample inference.
#' Only relevant if `pool="pseudo"`. Default is 2.
#'
#' PSEUDO_ABUNDANCE: When performing pseudo-pooling, all denoised sequence variants with total
#' abundance (over all samples) greater than this are used as priors for a subsequent round
#' of sample inference.
#' Only relevant if `pool="pseudo"`. Default is Inf (i.e. abundance ignored for this purpose).
#'
#' **Error Model**
#'
#' USE_QUALS: If TRUE, the dada(...) error model takes into account the consensus quality score of the dereplicated unique sequences.
#' If FALSE, quality scores are ignored. Default is TRUE.
#'
#' **Technical**
#'
#' SSE: Controls the level of explicit SSE vectorization for kmer calculations. Default 2. Maintained for development reasons,
#' should have no impact on output.
#'
#' \itemize{
#' \item{0: No explicit vectorization (but modern compilers will auto-vectorize the code).}
#' \item{1: Explicit SSE2. }
#' \item{2: Explicit, packed SSE2 using 8-bit integers. Slightly faster than SSE=1. }
#' }
#'
#' @seealso
#' \code{\link{getDadaOpt}}
#'
#' @export
#'
#' @examples
#' setDadaOpt(OMEGA_A = 1e-20)
#' setDadaOpt(MATCH=1, MISMATCH=-4, GAP_PENALTY=-6)
#' setDadaOpt(GREEDY=TRUE, GAPLESS=TRUE)
#'
setDadaOpt <- function(...) {
opts <- getDadaOpt()
args <- list(...)
if(length(args)==1 && is.list(args[[1]])) { # Arguments were passed in as a list, as returned by getDadaOpt
args <- args[[1]]
}
for(opnm in names(args)) {
if(opnm %in% names(opts)) { # class() OK here, since all dada-opts are simple objects with single classes
if( (class(getDadaOpt(opnm)) == class(args[[opnm]])) ||
(opnm == "HOMOPOLYMER_GAP_PENALTY" && # Allow numeric or NULL for HOMOPOLYMER_GAP_PENALTY
(is.numeric(args[["HOMOPOLYMER_GAP_PENALTY"]])) || is.null(args[["HOMOPOLYMER_GAP_PENALTY"]])) ) {
assign(opnm, args[[opnm]], envir=dada_opts)
} else {
warning(paste0(opnm, " not set, value provided has different class (", class(args[[opnm]]),
") then current option value (", class(getDadaOpt(opnm)), ")"))
}
} else {
warning(opnm, " is not a valid DADA option.")
}
}
}
################################################################################
#' Get DADA options
#'
#' @param option (Optional). Character.
#' The DADA option(s) to get.
#'
#' @return Named list of option/value pairs.
#' Returns NULL if an invalid option is requested.
#'
#' @seealso
#' \code{\link{setDadaOpt}}
#'
#' @export
#'
#' @examples
#' getDadaOpt("BAND_SIZE")
#' getDadaOpt()
#'
getDadaOpt <- function(option = NULL) {
if(is.null(option)) option <- ls(dada_opts)
if(!all(option %in% ls(dada_opts))) {
warning("Tried to get an invalid DADA option: ", option[!(option %in% ls(dada_opts))])
option <- option[option %in% ls(dada_opts)]
}
ropts <- lapply(option, function(x) get(x, envir=dada_opts))
names(ropts) <- option
if(length(ropts) == 1) ropts <- ropts[[1]] # If just one option requested, return it alone
return(ropts)
}