-
Notifications
You must be signed in to change notification settings - Fork 0
/
launch.py
169 lines (157 loc) · 8.18 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""Launching tool for DGL distributed training"""
import os
import stat
import sys
import subprocess
import argparse
import signal
import logging
import time
import json
import multiprocessing
from threading import Thread
DEFAULT_PORT = 30050
def execute_remote(cmd, ip, port, thread_list):
"""execute command line on remote machine via ssh"""
cmd = 'ssh -o StrictHostKeyChecking=no -p ' + str(port) + ' ' + ip + ' \'' + cmd + '\''
# thread func to run the job
def run(cmd):
subprocess.check_call(cmd, shell = True)
thread = Thread(target = run, args=(cmd,))
thread.setDaemon(True)
thread.start()
thread_list.append(thread)
def submit_jobs(args, udf_command):
"""Submit distributed jobs (server and client processes) via ssh"""
hosts = []
thread_list = []
server_count_per_machine = 0
# Get the IP addresses of the cluster.
ip_config = args.workspace + '/' + args.ip_config
with open(ip_config) as f:
for line in f:
result = line.strip().split()
if len(result) == 2:
ip = result[0]
port = int(result[1])
hosts.append((ip, port))
elif len(result) == 1:
ip = result[0]
port = DEFAULT_PORT
hosts.append((ip, port))
else:
raise RuntimeError("Format error of ip_config.")
server_count_per_machine = args.num_servers
# Get partition info of the graph data
part_config = args.workspace + '/' + args.part_config
with open(part_config) as conf_f:
part_metadata = json.load(conf_f)
assert 'num_parts' in part_metadata, 'num_parts does not exist.'
# The number of partitions must match the number of machines in the cluster.
assert part_metadata['num_parts'] == len(hosts), \
'The number of graph partitions has to match the number of machines in the cluster.'
tot_num_clients = args.num_trainers * (1 + args.num_samplers) * len(hosts)
# launch server tasks
server_cmd = 'DGL_ROLE=server DGL_NUM_SAMPLER=' + str(args.num_samplers)
server_cmd = server_cmd + ' ' + 'OMP_NUM_THREADS=' + str(args.num_server_threads)
server_cmd = server_cmd + ' ' + 'DGL_NUM_CLIENT=' + str(tot_num_clients)
server_cmd = server_cmd + ' ' + 'DGL_CONF_PATH=' + str(args.part_config)
server_cmd = server_cmd + ' ' + 'DGL_IP_CONFIG=' + str(args.ip_config)
server_cmd = server_cmd + ' ' + 'DGL_NUM_SERVER=' + str(args.num_servers)
for i in range(len(hosts)*server_count_per_machine):
ip, _ = hosts[int(i / server_count_per_machine)]
cmd = server_cmd + ' ' + 'DGL_SERVER_ID=' + str(i)
cmd = cmd + ' ' + udf_command
cmd = 'cd ' + str(args.workspace) + '; ' + cmd
execute_remote(cmd, ip, args.ssh_port, thread_list)
# launch client tasks
client_cmd = 'DGL_DIST_MODE="distributed" DGL_ROLE=client DGL_NUM_SAMPLER=' + str(args.num_samplers)
client_cmd = client_cmd + ' ' + 'DGL_NUM_CLIENT=' + str(tot_num_clients)
client_cmd = client_cmd + ' ' + 'DGL_CONF_PATH=' + str(args.part_config)
client_cmd = client_cmd + ' ' + 'DGL_IP_CONFIG=' + str(args.ip_config)
client_cmd = client_cmd + ' ' + 'DGL_NUM_SERVER=' + str(args.num_servers)
if os.environ.get('OMP_NUM_THREADS') is not None:
client_cmd = client_cmd + ' ' + 'OMP_NUM_THREADS=' + os.environ.get('OMP_NUM_THREADS')
else:
client_cmd = client_cmd + ' ' + 'OMP_NUM_THREADS=' + str(args.num_omp_threads)
if os.environ.get('PYTHONPATH') is not None:
client_cmd = client_cmd + ' ' + 'PYTHONPATH=' + os.environ.get('PYTHONPATH')
torch_cmd = '-m torch.distributed.launch'
torch_cmd = torch_cmd + ' ' + '--nproc_per_node=' + str(args.num_trainers)
torch_cmd = torch_cmd + ' ' + '--nnodes=' + str(len(hosts))
torch_cmd = torch_cmd + ' ' + '--node_rank=' + str(0)
torch_cmd = torch_cmd + ' ' + '--master_addr=' + str(hosts[0][0])
torch_cmd = torch_cmd + ' ' + '--master_port=' + str(1234)
for node_id, host in enumerate(hosts):
ip, _ = host
new_torch_cmd = torch_cmd.replace('node_rank=0', 'node_rank='+str(node_id))
if 'python3' in udf_command:
new_udf_command = udf_command.replace('python3', 'python3 ' + new_torch_cmd)
elif 'python2' in udf_command:
new_udf_command = udf_command.replace('python2', 'python2 ' + new_torch_cmd)
else:
new_udf_command = udf_command.replace('python', 'python ' + new_torch_cmd)
cmd = client_cmd + ' ' + new_udf_command
cmd = 'cd ' + str(args.workspace) + '; ' + cmd
execute_remote(cmd, ip, args.ssh_port, thread_list)
for thread in thread_list:
thread.join()
def main():
parser = argparse.ArgumentParser(description='Launch a distributed job')
parser.add_argument('--ssh_port', type=int, default=22, help='SSH Port.')
parser.add_argument('--workspace', type=str,
help='Path of user directory of distributed tasks. \
This is used to specify a destination location where \
the contents of current directory will be rsyncd')
parser.add_argument('--num_trainers', type=int,
help='The number of trainer processes per machine')
parser.add_argument('--num_omp_threads', type=int,
help='The number of OMP threads per trainer')
parser.add_argument('--num_samplers', type=int, default=0,
help='The number of sampler processes per trainer process')
parser.add_argument('--num_servers', type=int,
help='The number of server processes per machine')
parser.add_argument('--part_config', type=str,
help='The file (in workspace) of the partition config')
parser.add_argument('--ip_config', type=str,
help='The file (in workspace) of IP configuration for server processes')
parser.add_argument('--num_server_threads', type=int, default=1,
help='The number of OMP threads in the server process. \
It should be small if server processes and trainer processes run on \
the same machine. By default, it is 1.')
args, udf_command = parser.parse_known_args()
assert len(udf_command) == 1, 'Please provide user command line.'
assert args.num_trainers is not None and args.num_trainers > 0, \
'--num_trainers must be a positive number.'
assert args.num_samplers is not None and args.num_samplers >= 0, \
'--num_samplers must be a non-negative number.'
assert args.num_servers is not None and args.num_servers > 0, \
'--num_servers must be a positive number.'
assert args.num_server_threads > 0, '--num_server_threads must be a positive number.'
assert args.workspace is not None, 'A user has to specify a workspace with --workspace.'
assert args.part_config is not None, \
'A user has to specify a partition configuration file with --part_config.'
assert args.ip_config is not None, \
'A user has to specify an IP configuration file with --ip_config.'
if args.num_omp_threads is None:
# Here we assume all machines have the same number of CPU cores as the machine
# where the launch script runs.
args.num_omp_threads = max(multiprocessing.cpu_count() // 2 // args.num_trainers, 1)
print('The number of OMP threads per trainer is set to', args.num_omp_threads)
udf_command = str(udf_command[0])
if 'python' not in udf_command:
raise RuntimeError("DGL launching script can only support Python executable file.")
if sys.version_info.major and sys.version_info.minor >= 8:
if args.num_samplers > 0:
print('WARNING! DGL does not support multiple sampler processes in Python>=3.8. '
+ 'Set the number of sampler processes to 0.')
args.num_samplers = 0
submit_jobs(args, udf_command)
def signal_handler(signal, frame):
logging.info('Stop launcher')
sys.exit(0)
if __name__ == '__main__':
fmt = '%(asctime)s %(levelname)s %(message)s'
logging.basicConfig(format=fmt, level=logging.INFO)
signal.signal(signal.SIGINT, signal_handler)
main()