- 1. 环境依赖
- 2. 下载 FastDeploy Windows 10 C++ SDK
- 3. Windows下多种方式使用 C++ SDK 的方式
- 4. 多种方法配置exe运行时所需的依赖库
- cmake >= 3.12
- Visual Studio 16 2019
- cuda >= 11.2 (当WITH_GPU=ON)
- cudnn >= 8.0 (当WITH_GPU=ON)
可以从以下链接下载编译好的 FastDeploy Windows 10 C++ SDK,SDK中包含了examples代码。
https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-win-x64-gpu-0.2.1.zip
源码编译请参考: build_and_install
可以从以下链接下载模型文件和测试图片,并解压缩
https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz # (下载后解压缩)
https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
Windows菜单打开x64 Native Tools Command Prompt for VS 2019
命令工具,cd到ppyoloe的demo路径
cd fastdeploy-win-x64-gpu-0.2.1\examples\vision\detection\paddledetection\cpp
mkdir build && cd build
cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=%cd%\..\..\..\..\..\..\..\fastdeploy-win-x64-gpu-0.2.1 -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2"
然后执行
msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64
cd Release
infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 0 # CPU
infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 1 # GPU
infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 2 # GPU + TensorRT
特别说明,exe运行时所需要的依赖库配置方法,请参考章节: 多种方法配置exe运行时所需的依赖库
本章节针对非CMake用户,介绍如何在Visual Studio 2019 中创建 sln 工程使用 FastDeploy C++ SDK. CMake用户请直接看下一章节。另外,本章节内容特别感谢“梦醒南天”同学关于FastDeploy使用的文档教程:如何在 Windows 上使用 FastDeploy C++ 部署 PaddleDetection 目标检测模型
(1) 打开Visual Studio 2019,点击"创建新项目"->点击"控制台程序",从而创建新的sln工程项目.
(2)点击“创建”,便创建了一个空的sln工程。我们直接从examples里面拷贝infer_ppyoloe的代码这里。
(1)从examples中拷贝infer_ppyoloe.cc的代码到工程,直接替换即可,拷贝代码的路径为:
fastdeploy-win-x64-gpu-0.2.1\examples\vision\detection\paddledetection\cpp
(1)配置头文件include路径:鼠标选择项目,然后单击右键即可弹出下来菜单,在其中单击“属性”。
(2)在弹出来的属性页中选择:C/C++ —> 常规 —> 附加包含目录,然后在添加 fastdeploy 和 opencv 的头文件路径。如:
D:\qiuyanjun\fastdeploy_build\built\fastdeploy-win-x64-gpu-0.2.1\include
D:\qiuyanjun\fastdeploy_build\built\fastdeploy-win-x64-gpu-0.2.1\third_libs\install\opencv-win-x64-3.4.16\build\include
注意,如果是自行编译最新的SDK或版本>0.2.1,依赖库目录结构有所变动,opencv路径需要做出适当的修改。如:
D:\qiuyanjun\fastdeploy_build\built\fastdeploy-win-x64-gpu-0.2.1\third_libs\install\opencv\build\include
用户需要根据自己实际的sdk路径稍作修改。
(1)属性页中选择:链接器—>常规—> 附加库目录,然后在添加 fastdeploy 和 opencv 的lib路径。如:
D:\qiuyanjun\fastdeploy_build\built\fastdeploy-win-x64-gpu-0.2.1\lib
D:\qiuyanjun\fastdeploy_build\built\fastdeploy-win-x64-gpu-0.2.1\third_libs\install\opencv-win-x64-3.4.16\build\x64\vc15\lib
注意,如果是自行编译最新的SDK或版本>0.2.1,依赖库目录结构有所变动,opencv路径需要做出适当的修改。如:
D:\qiuyanjun\fastdeploy_build\built\fastdeploy-win-x64-gpu-0.2.1\third_libs\install\opencv\build\include
(2)添加库文件:只需要 fastdeploy.lib 和 opencv_world3416.lib
(1)点击菜单栏“生成”->“生成解决方案”
编译成功,可以看到exe保存在:
D:\qiuyanjun\fastdeploy_test\infer_ppyoloe\x64\Release\infer_ppyoloe.exe
(2)执行可执行文件,获得推理结果。 首先需要拷贝所有的dll到exe所在的目录下。同时,也需要把ppyoloe的模型文件和测试图片下载解压缩后,拷贝到exe所在的目录。 特别说明,exe运行时所需要的依赖库配置方法,请参考章节: 多种方法配置exe运行时所需的依赖库
本章节针对CMake用户,介绍如何在Visual Studio 2019 中创建 CMake 工程使用 FastDeploy C++ SDK.
(1)打开Visual Studio 2019,点击"创建新项目"->点击"CMake",从而创建CMake工程项目。以PPYOLOE为例,来说明如何在Visual Studio 2019 IDE中使用FastDeploy C++ SDK.
(2)打开工程发现,Visual Stuio 2019已经为我们生成了一些基本的文件,其中包括CMakeLists.txt。infer_ppyoloe.h头文件这里实际上用不到,我们可以直接删除。
(1)在工程创建完成后,我们需要添加infer_ppyoloe推理源码,并修改CMakeLists.txt,修改如下:
(2)其中infer_ppyoloe.cpp的代码可以直接从examples中的代码拷贝过来:
(3)CMakeLists.txt主要包括配置FastDeploy C++ SDK的路径,如果是GPU版本的SDK,还需要配置CUDA_DIRECTORY为CUDA的安装路径,CMakeLists.txt的配置如下:
project(infer_ppyoloe_demo C CXX)
cmake_minimum_required(VERSION 3.12)
# Only support "Release" mode now
set(CMAKE_BUILD_TYPE "Release")
# Set FastDeploy install dir
set(FASTDEPLOY_INSTALL_DIR "D:/qiuyanjun/fastdeploy-win-x64-gpu-0.2.1"
CACHE PATH "Path to downloaded or built fastdeploy sdk.")
# Set CUDA_DIRECTORY (CUDA 11.x) for GPU SDK
set(CUDA_DIRECTORY "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.7"
CACHE PATH "Path to installed CUDA Toolkit.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_ppyoloe_demo ${PROJECT_SOURCE_DIR}/infer_ppyoloe.cpp)
target_link_libraries(infer_ppyoloe_demo ${FASTDEPLOY_LIBS})
# Optional: install all DLLs to binary dir.
install_fastdeploy_libraries(${CMAKE_CURRENT_BINARY_DIR}/Release)
注意,install_fastdeploy_libraries
函数仅在最新的代码编译的SDK或版本>0.2.1下有效。
(1)点击"CMakeLists.txt"->右键点击"生成缓存":
发现已经成功生成缓存了,但是由于打开工程时,默认是Debug模式,我们发现exe和缓存保存路径还是Debug模式下的。 我们可以先修改CMake的设置为Release.
(2)点击"CMakeLists.txt"->右键点击"infer_ppyoloe_demo的cmake设置",进入CMakeSettings.json的设置面板,把其中的Debug设置修改为Release.
同时设置CMake生成器为 "Visual Studio 16 2019 Win64"
(3)点击保存CMake缓存以切换为Release配置:
(4):(4.1)点击"CMakeLists.txt"->右键"CMake缓存仅限x64-Release"->"点击删除缓存";(4.2)点击"CMakeLists.txt"->"生成缓存";(4.3)如果在步骤一发现删除缓存的选项是灰色的可以直接点击"CMakeLists.txt"->"生成",若生成失败则可以重复尝试(4.1)和(4。2)
最终可以看到,配置已经成功生成Relase模式下的CMake缓存了。
(1)点击"CMakeLists.txt"->"生成"。可以发现已经成功生成了infer_ppyoloe_demo.exe,并保存在out/build/x64-Release/Release
目录下。
(2)执行可执行文件,获得推理结果。 首先需要拷贝所有的dll到exe所在的目录下,这里我们可以在CMakeLists.txt添加一下命令,可将FastDeploy中所有的dll安装到指定的目录。注意,该方式仅在最新的代码编译的SDK或版本>0.2.1下有效。其他配置方式,请参考章节: 多种方法配置exe运行时所需的依赖库
install_fastdeploy_libraries(${CMAKE_CURRENT_BINARY_DIR}/Release)
(3)同时,也需要把ppyoloe的模型文件和测试图片下载解压缩后,拷贝到exe所在的目录。 准备完成后,目录结构如下:
(4)最后,执行以下命令获得推理结果:
D:\xxxinfer_ppyoloe\out\build\x64-Release\Release>infer_ppyoloe_demo.exe ppyoloe_crn_l_300e_coco 000000014439.jpg 0
[INFO] fastdeploy/runtime.cc(304)::fastdeploy::Runtime::Init Runtime initialized with Backend::OPENVINO in Device::CPU.
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
415.047180,89.311569, 506.009613, 283.863098, 0.950423, 0
163.665710,81.914932, 198.585342, 166.760895, 0.896433, 0
581.788635,113.027618, 612.623474, 198.521713, 0.842596, 0
267.217224,89.777306, 298.796051, 169.361526, 0.837951, 0
......
153.301407,123.233757, 177.130539, 164.558350, 0.066697, 60
505.887604,140.919601, 523.167236, 151.875336, 0.084912, 67
Visualized result saved in ./vis_result.jpg
打开保存的图片查看可视化结果:
特别说明,exe运行时所需要的依赖库配置方法,请参考章节: 多种方法配置exe运行时所需的依赖库
说明:对于使用的最新源码编译的SDK或SDK版本>0.2.1的用户,我们推荐使用(4.1)和(4.2)中的方式配置运行时的依赖库。如果使用的SDK版本<=0.2.1,请参考(4.3)和(4.4)中的方式进行配置。对于版本高于0.2.1的SDK,我们提供了 fastdeploy_init.bat 工具来管理FastDeploy中所有的依赖库。可以通过该脚本工具查看(show)、拷贝(install) 和 设置(init and setup) SDK中所有的dll,方便用户快速完成运行时环境配置。
首先进入SDK的根目录,运行以下命令,可以查看 fastdeploy_init.bat 的用法说明
D:\path-to-your-fastdeploy-sdk-dir>fastdeploy_init.bat help
------------------------------------------------------------------------------------------------------------------------------------------------------------
[1] [help] print help information: fastdeploy_init.bat help
[2] [show] show all dlls/libs/include paths: fastdeploy_init.bat show fastdeploy-sdk-dir
[3] [init] init all dlls paths for current terminal: fastdeploy_init.bat init fastdeploy-sdk-dir [WARNING: need copy onnxruntime.dll manually]
[4] [setup] setup path env for current terminal: fastdeploy_init.bat setup fastdeploy-sdk-dir [WARNING: need copy onnxruntime.dll manually]
[5] [install] install all dlls to a specific dir: fastdeploy_init.bat install fastdeploy-sdk-dir another-dir-to-install-dlls **[RECOMMEND]**
[6] [install] install all dlls with logging infos: fastdeploy_init.bat install fastdeploy-sdk-dir another-dir-to-install-dlls info
------------------------------------------------------------------------------------------------------------------------------------------------------------
用法简要说明如下:
- help: 打印所有的用法说明
- show: 查看SDK中所有的 dll、lib 和 include 路径
- init: 初始化所有dll路径信息,后续用于设置terminal环境变量(不推荐,请参考4.3中关于onnxruntime的说明)
- setup: 在init之后运行,设置terminal环境便令(不推荐,请参考4.3中关于onnxruntime的说明)
- install: 将SDK中所有的dll安装到某个指定的目录(推荐)
进入SDK的根目录,运行show命令,可以查看SDK中所有的 dll、lib 和 include 路径。以下命令中 %cd% 表示当前目录(SDK的根目录)。
D:\path-to-fastdeploy-sdk-dir>fastdeploy_init.bat show %cd%
------------------------------------------------------------------------------------------------------------------------------------------------------------
[SDK] D:\path-to-fastdeploy-sdk-dir
------------------------------------------------------------------------------------------------------------------------------------------------------------
[DLL] D:\path-to-fastdeploy-sdk-dir\lib\fastdeploy.dll **[NEEDED]**
[DLL] D:\path-to-fastdeploy-sdk-dir\third_libs\install\faster_tokenizer\lib\core_tokenizers.dll **[NEEDED]**
[DLL] D:\path-to-fastdeploy-sdk-dir\third_libs\install\opencv\build\x64\vc15\bin\opencv_ffmpeg3416_64.dll **[NEEDED]**
......
------------------------------------------------------------------------------------------------------------------------------------------------------------
[Lib] D:\path-to-fastdeploy-sdk-dir\lib\fastdeploy.lib **[NEEDED][fastdeploy]**
[Lib] D:\path-to-fastdeploy-sdk-dir\third_libs\install\faster_tokenizer\lib\core_tokenizers.lib **[NEEDED][fastdeploy::text]**
[Lib] D:\path-to-fastdeploy-sdk-dir\third_libs\install\opencv\build\x64\vc15\lib\opencv_world3416.lib **[NEEDED][fastdeploy::vision]**
......
------------------------------------------------------------------------------------------------------------------------------------------------------------
[Include] D:\path-to-fastdeploy-sdk-dir\include **[NEEDED][fastdeploy]**
[Include] D:\path-to-fastdeploy-sdk-dir\third_libs\install\faster_tokenizer\include **[NEEDED][fastdeploy::text]**
[Include] D:\path-to-fastdeploy-sdk-dir\third_libs\install\opencv\build\include **[NEEDED][fastdeploy::vision]**
......
------------------------------------------------------------------------------------------------------------------------------------------------------------
[XML] D:\path-to-fastdeploy-sdk-dir\third_libs\install\openvino\runtime\bin\plugins.xml **[NEEDED]**
------------------------------------------------------------------------------------------------------------------------------------------------------------
可以看到该命令会根据您当前的SDK,输出对应的信息,包含 dll、lib 和 include 的路径信息。对于 dll,被标记为 [NEEDED]
的,是运行时所需要的,如果包含OpenVINO后端,还需要将他的plugins.xml拷贝到exe所在的目录;对于 lib 和 include,被标记为[NEEDED]
的,是开发时所需要配置的最小依赖。并且,我们还增加了对应的API Tag标记,如果您只使用vision API,则只需要配置标记为 [NEEDED][fastdeploy::vision]
的 lib 和 include 路径.
进入SDK的根目录,运行install命令,可以将SDK 中所有的 dll 安装到指定的目录(如exe所在的目录)。我们推荐这种方式来配置exe运行所需要的依赖库。比如,可以在SDK根目录下创建一个临时的bin目录备份所有的dll文件。以下命令中 %cd% 表示当前目录(SDK的根目录)。
% info参数为可选参数,添加info参数后会打印详细的安装信息 %
D:\path-to-fastdeploy-sdk-dir>fastdeploy_init.bat install %cd% bin
D:\path-to-fastdeploy-sdk-dir>fastdeploy_init.bat install %cd% bin info
D:\path-to-fastdeploy-sdk-dir>fastdeploy_init.bat install %cd% bin
[INFO] Do you want to install all FastDeploy dlls ?
[INFO] From: D:\path-to-fastdeploy-sdk-dir
[INFO] To: bin
Choose y means YES, n means NO: [y/n]y
YES.
请按任意键继续. . .
[INFO] Created bin done!
已复制 1 个文件。
已复制 1 个文件。
已复制 1 个文件。
已复制 1 个文件。
.....
已复制 1 个文件。
已复制 1 个文件。
已复制 1 个文件。
已复制 1 个文件。
.....
您也可以选择通过配置环境变量的方式来设置运行时的依赖库环境,这种方式只在当前的terminal有效。如果您使用的SDK中包含了onnxruntime推理后端,我们不推荐这种方式,详细原因请参考(4.3)中关于onnxruntime配置的说明(需要手动拷贝onnxruntime所有的dll到exe所在的目录)。配置 SDK 环境变量的方式如下。以下命令中 %cd% 表示当前目录(SDK的根目录)。
% 先运行 init 初始化当前SDK所有的dll文件路径 %
D:\path-to-fastdeploy-sdk-dir>fastdeploy_init.bat init %cd%
% 再运行 setup 完成 SDK 环境变量配置 %
D:\path-to-fastdeploy-sdk-dir>fastdeploy_init.bat setup %cd%
考虑到Windows下C++开发的特殊性,如经常需要拷贝所有的lib或dll文件到某个指定的目录,FastDeploy提供了install_fastdeploy_libraries
的cmake函数,方便用户快速配置所有的dll。修改ppyoloe的CMakeLists.txt,添加:
install_fastdeploy_libraries(${CMAKE_CURRENT_BINARY_DIR}/Release)
注意,该方式仅在最新的代码编译的SDK或版本>0.2.1下有效。
编译好的exe保存在Release目录下,在运行demo前,需要将模型和测试图片拷贝至该目录。另外,需要在终端指定DLL的搜索路径。请在build目录下执行以下命令。
set FASTDEPLOY_HOME=%cd%\..\..\..\..\..\..\..\fastdeploy-win-x64-gpu-0.2.1
set PATH=%FASTDEPLOY_HOME%\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\onnxruntime\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\opencv-win-x64-3.4.16\build\x64\vc15\bin;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\paddle_inference\paddle\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\paddle_inference\third_party\install\mkldnn\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\paddle_inference\third_party\install\mklml\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\paddle2onnx\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\tensorrt\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\faster_tokenizer\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\faster_tokenizer\third_party\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\yaml-cpp\lib;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\openvino\bin;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\openvino\3rdparty\tbb\bin;%PATH%
注意,需要拷贝onnxruntime.dll到exe所在的目录。
copy /Y %FASTDEPLOY_HOME%\third_libs\install\onnxruntime\lib\onnxruntime* Release\
由于较新的Windows在System32系统目录下自带了onnxruntime.dll,因此就算设置了PATH,系统依然会出现onnxruntime的加载冲突。因此需要先拷贝demo用到的onnxruntime.dll到exe所在的目录。如下
where onnxruntime.dll
C:\Windows\System32\onnxruntime.dll # windows自带的onnxruntime.dll
另外,注意,如果是自行编译最新的SDK或版本>0.2.1,opencv和openvino目录结构有所改变,路径需要做出适当的修改。如:
set PATH=%FASTDEPLOY_HOME%\third_libs\install\opencv\build\x64\vc15\bin;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\openvino\runtime\bin;%PATH%
set PATH=%FASTDEPLOY_HOME%\third_libs\install\openvino\runtime\3rdparty\tbb\bin;%PATH%
可以把上述命令拷贝并保存到build目录下的某个bat脚本文件中(包含copy onnxruntime),如setup_fastdeploy_dll.bat
,方便多次使用。
setup_fastdeploy_dll.bat
手动拷贝,或者在build目录下执行以下命令:
set FASTDEPLOY_HOME=%cd%\..\..\..\..\..\..\..\fastdeploy-win-x64-gpu-0.2.1
copy /Y %FASTDEPLOY_HOME%\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\onnxruntime\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\opencv-win-x64-3.4.16\build\x64\vc15\bin\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\paddle_inference\paddle\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\paddle_inference\third_party\install\mkldnn\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\paddle_inference\third_party\install\mklml\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\paddle2onnx\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\tensorrt\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\faster_tokenizer\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\faster_tokenizer\third_party\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\yaml-cpp\lib\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\bin\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\bin\*.xml Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\3rdparty\tbb\bin\*.dll Release\
另外,注意,如果是自行编译最新的SDK或版本>0.2.1,opencv和openvino目录结构有所改变,路径需要做出适当的修改。如:
copy /Y %FASTDEPLOY_HOME%\third_libs\install\opencv\build\x64\vc15\bin\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\runtime\bin\*.dll Release\
copy /Y %FASTDEPLOY_HOME%\third_libs\install\openvino\runtime\3rdparty\tbb\bin\*.dll Release\
可以把上述命令拷贝并保存到build目录下的某个bat脚本文件中,如copy_fastdeploy_dll.bat
,方便多次使用。
copy_fastdeploy_dll.bat
特别说明:上述的set和copy命令对应的依赖库路径,需要用户根据自己使用SDK中的依赖库进行适当地修改。比如,若是CPU版本的SDK,则不需要TensorRT相关的设置。