English | 简体中文
⚡️FastDeploy is an accessible and efficient deployment Development Toolkit. It covers 🔥critical CV、NLP、Speech AI models in the industry and provides 📦out-of-the-box deployment experience. It covers image classification, object detection, image segmentation, face detection, face recognition, human keypoint detection, OCR, semantic understanding and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform .
Image Classification | Object Detection | Semantic Segmentation | Potrait Segmentation |
---|---|---|---|
Image Matting | Real-Time Matting | OCR | Face Alignment |
Pose Estimation | Behavior Recognition | NLP | Speech |
input :早上好今天是2020 |
- 🔥 【Live Preview】2022.11.09 20:30~21:30,《Covering the full spectrum of cloud-side scenarios with 150+ popular models for rapid deployment》
- 🔥 【Live Preview】2022.11.10 20:30~21:30,《10+ AI hardware deployments from Rockchip, Amlogic, NXP and others, straight to industry landing》
- 🔥 【Live Preview】2022.11.10 19:00~20:00,《10+ popular models deployed in RK3588, RK3568 in action》
- Scan the QR code below using WeChat, follow the PaddlePaddle official account and fill out the questionnaire to join the WeChat group
-
🔥 2022.10.31:Release FastDeploy release v0.5.0
- 🖥️ Data Center and Cloud Deployment: Support more backend, Support more CV models
- Support Paddle Inference TensorRT, and provide a seamless deployment experience with other inference engines include Paddle Inference、Paddle Lite、TensorRT、OpenVINO、ONNX Runtime;
- Support Graphcore IPU through paddle Inference;
- Support tracking model PP-Tracking and RobustVideoMatting model;
- Support one-click model quantization to improve model inference speed by 1.5 to 2 times on CPU & GPU platform. The supported quantized model are YOLOv7, YOLOv6, YOLOv5, etc.
- 🖥️ Data Center and Cloud Deployment: Support more backend, Support more CV models
-
🔥 2022.10.24:Release FastDeploy release v0.4.0
- 🖥️ Data Center and Cloud Deployment: end-to-end optimization, Support more CV and NLP model
- end-to-end optimization on GPU, YOLO series model end-to-end inference speedup from 43ms to 25ms;
- Support CV models include PP-OCRv3, PP-OCRv2, PP-TinyPose, PP-Matting, etc. and provides end-to-end deployment demos;
- Support information extraction model is UIE, and provides end-to-end deployment demos;
- Support TinyPose and PicoDet and TinyPosePipeline deployment.
- 📲 Mobile and Edge Device Deployment: support new backend,support more CV model
- Integrate Paddle Lite and provide a seamless deployment experience with other inference engines include TensorRT、OpenVINO、ONNX Runtime、Paddle Inference;
- Support Lightweight Detection Model and classification model on Android Platform,Download to try it out.
- Web-Side Deployment: support more CV model
- Web deployment and Mini Program deployment New OCR and other CV models capability.
- 🖥️ Data Center and Cloud Deployment: end-to-end optimization, Support more CV and NLP model
-
📖 Tutorials(click to shrink)
- Install
- How to Install FastDeploy Prebuilt Libraries
- How to Build and Install FastDeploy Library on GPU Platform
- How to Build and Install FastDeploy Library on CPU Platform
- How to Build and Install FastDeploy Library on IPU Platform
- How to Build and Install FastDeploy Library on Nvidia Jetson Platform
- How to Build and Install FastDeploy Library on Android Platform
- A Quick Start - Demos
- API (To be continued)
- Performance Optimization
- Frequent Q&As
- More FastDeploy Deployment Module
- Install
- 🖥️ Data Center and Cloud Deployment
- 📲 Mobile and Edge Device Deployment
- Web and Mini Program Deployment
- Community
- Acknowledge
- License
A Quick Start for Python SDK(click to shrink)
- CUDA >= 11.2 、cuDNN >= 8.0 、 Python >= 3.6
- OS: Linux x86_64/macOS/Windows 10
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2
pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
- Prepare models and pictures
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
- Test inference results
# For deployment of GPU/TensorRT, please refer to examples/vision/detection/paddledetection/python
import cv2
import fastdeploy.vision as vision
model = vision.detection.PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
"ppyoloe_crn_l_300e_coco/model.pdiparams",
"ppyoloe_crn_l_300e_coco/infer_cfg.yml")
im = cv2.imread("000000014439.jpg")
result = model.predict(im.copy())
print(result)
vis_im = vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
A Quick Start for C++ SDK(click to expand)
- Please refer to C++ Prebuilt Libraries Download
- Prepare models and pictures
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
- Test inference results
// For GPU/TensorRT deployment, please refer to examples/vision/detection/paddledetection/cpp
#include "fastdeploy/vision.h"
int main(int argc, char* argv[]) {
namespace vision = fastdeploy::vision;
auto model = vision::detection::PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
"ppyoloe_crn_l_300e_coco/model.pdiparams",
"ppyoloe_crn_l_300e_coco/infer_cfg.yml");
auto im = cv::imread("000000014439.jpg");
vision::DetectionResult res;
model.Predict(&im, &res);
auto vis_im = vision::Visualize::VisDetection(im, res, 0.5);
cv::imwrite("vis_image.jpg", vis_im);
return 0;
}
For more deployment models, please refer to Vision Model Deployment Examples .
Notes: ✅: already supported; ❔: to be supported in the future; N/A: Not Available;
Task | Model | API | Linux | Linux | Win | Win | Mac | Mac | Linux | Linux | Linux | Linux |
---|---|---|---|---|---|---|---|---|---|---|---|---|
--- | --- | --- | X86 CPU | NVIDIA GPU | Intel CPU | NVIDIA GPU | Intel CPU | Arm CPU | AArch64 CPU | NVIDIA Jetson | Graphcore IPU | Serving |
Classification | PaddleClas/ResNet50 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | TorchVison/ResNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Classification | ltralytics/YOLOv5Cls | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Classification | PaddleClas/PP-LCNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/PP-LCNetv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/EfficientNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/GhostNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV1 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/MobileNetV3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/ShuffleNetV2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/SqueeezeNetV1.1 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/Inceptionv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Classification | PaddleClas/PP-HGNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ |
Classification | PaddleClas/SwinTransformer | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | PaddleDetection/PP-YOLOE | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | PaddleDetection/PicoDet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | PaddleDetection/YOLOX | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | PaddleDetection/YOLOv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | PaddleDetection/PP-YOLO | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | PaddleDetection/PP-YOLOv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | PaddleDetection/Faster-RCNN | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | PaddleDetection/Mask-RCNN | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | Megvii-BaseDetection/YOLOX | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | WongKinYiu/YOLOv7 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | WongKinYiu/YOLOv7end2end_trt | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ||
Detection | WongKinYiu/YOLOv7end2end_ort_ | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ||
Detection | meituan/YOLOv6 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | ultralytics/YOLOv5 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | WongKinYiu/YOLOR | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | WongKinYiu/ScaledYOLOv4 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | ppogg/YOLOv5Lite | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Detection | RangiLyu/NanoDetPlus | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
KeyPoint | PaddleDetection/TinyPose | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
KeyPoint | PaddleDetection/PicoDet + TinyPose | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
HeadPose | omasaht/headpose | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Tracking | PaddleDetection/PP-Tracking | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
OCR | PaddleOCR/PP-OCRv2 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
OCR | PaddleOCR/PP-OCRv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Segmentation | PaddleSeg/PP-LiteSeg | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Segmentation | PaddleSeg/PP-HumanSegLite | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Segmentation | PaddleSeg/HRNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Segmentation | PaddleSeg/PP-HumanSegServer | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Segmentation | PaddleSeg/Unet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Segmentation | PaddleSeg/Deeplabv3 | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
FaceDetection | biubug6/RetinaFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
FaceDetection | Linzaer/UltraFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
FaceDetection | deepcam-cn/YOLOv5Face | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ |
FaceDetection | insightface/SCRFD | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
FaceAlign | Hsintao/PFLD | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
FaceRecognition | insightface/ArcFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
FaceRecognition | insightface/CosFace | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
FaceRecognition | insightface/PartialFC | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
FaceRecognition | insightface/VPL | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Matting | ZHKKKe/MODNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Matting | PeterL1n/RobustVideoMatting | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Matting | PaddleSeg/PP-Matting | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Matting | PaddleSeg/PP-HumanMatting | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Matting | PaddleSeg/ModNet | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
Information Extraction | PaddleNLP/UIE | Python/C++ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❔ |
NLP | PaddleNLP/ERNIE-3.0 | Python/C++ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ✅ |
Speech | PaddleSpeech/PP-TTS | Python/C++ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | -- | ✅ |
Task | Model | Size (MB) | Linux | Android | iOS | Linux | Linux | Linux | Linux | TBD... |
---|---|---|---|---|---|---|---|---|---|---|
--- | --- | --- | ARM CPU | ARM CPU | ARM CPU | Rockchip-NPU RK3568/RK3588 |
Rockchip-NPU RV1109/RV1126/RK1808 |
Amlogic-NPU A311D/S905D/C308X |
NXP-NPU i.MX 8M Plus |
TBD...| |
Classification | PaddleClas/PP-LCNet | 11.9 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/PP-LCNetv2 | 26.6 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/EfficientNet | 31.4 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/GhostNet | 20.8 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/MobileNetV1 | 17 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/MobileNetV2 | 14.2 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/MobileNetV3 | 22 | ✅ | ✅ | ❔ | ❔ | ❔ | ❔ | ❔ | -- |
Classification | PaddleClas/ShuffleNetV2 | 9.2 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/SqueezeNetV1.1 | 5 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/Inceptionv3 | 95.5 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/PP-HGNet | 59 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Classification | PaddleClas/SwinTransformer_224_win7 | 352.7 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Detection | PaddleDetection/PP-PicoDet_s_320_coco | 4.1 | ✅ | ✅ | ❔ | ❔ | -- | -- | -- | -- |
Detection | PaddleDetection/PP-PicoDet_s_320_lcnet | 4.9 | ✅ | ✅ | ❔ | ❔ | ✅ | ✅ | ✅ | -- |
Detection | PaddleDetection/CenterNet | 4.8 | ✅ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Detection | PaddleDetection/YOLOv3_MobileNetV3 | 94.6 | ✅ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Detection | PaddleDetection/PP-YOLO_tiny_650e_coco | 4.4 | ✅ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Detection | PaddleDetection/SSD_MobileNetV1_300_120e_voc | 23.3 | ✅ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Detection | PaddleDetection/PP-YOLO_ResNet50vd | 188.5 | ✅ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Detection | PaddleDetection/PP-YOLOv2_ResNet50vd | 218.7 | ✅ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Detection | PaddleDetection/PP-YOLO_crn_l_300e_coco | 209.1 | ✅ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Detection | YOLOv5s | 29.3 | ❔ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Face Detection | BlazeFace | 1.5 | ❔ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Face Detection | RetinaFace | 1.7 | ❔ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Keypoint Detection | PaddleDetection/PP-TinyPose | 5.5 | ✅ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | -- |
Segmentation | PaddleSeg/PP-LiteSeg(STDC1) | 32.2 | ✅ | ❔ | ❔ | ✅ | -- | -- | -- | -- |
Segmentation | PaddleSeg/PP-HumanSeg-Lite | 0.556 | ✅ | ❔ | ❔ | ✅ | -- | -- | -- | -- |
Segmentation | PaddleSeg/HRNet-w18 | 38.7 | ✅ | ❔ | ❔ | ✅ | -- | -- | -- | -- |
Segmentation | PaddleSeg/PP-HumanSeg | 107.2 | ✅ | ❔ | ❔ | ✅ | -- | -- | -- | -- |
Segmentation | PaddleSeg/Unet | 53.7 | ✅ | ❔ | ❔ | ✅ | -- | -- | -- | -- |
Segmentation | PaddleSeg/Deeplabv3 | 150 | ❔ | ❔ | ❔ | ✅ | ||||
OCR | PaddleOCR/PP-OCRv1 | 2.3+4.4 | ❔ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
OCR | PaddleOCR/PP-OCRv2 | 2.3+4.4 | ✅ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
OCR | PaddleOCR/PP-OCRv3 | 2.4+10.6 | ✅ | ❔ | ❔ | ❔ | ❔ | ❔ | ❔ | -- |
OCR | PaddleOCR/PP-OCRv3-tiny | 2.4+10.7 | ❔ | ❔ | ❔ | ❔ | -- | -- | -- | -- |
Task | Model | web_demo |
---|---|---|
--- | --- | Paddle.js |
Detection | FaceDetection | ✅ |
Detection | ScrewDetection | ✅ |
Segmentation | PaddleSeg/HumanSeg | ✅ |
Object Recognition | GestureRecognition | ✅ |
Object Recognition | ItemIdentification | ✅ |
OCR | PaddleOCR/PP-OCRv3 | ✅ |
- If you have any question or suggestion, please give us your valuable input via GitHub Issues
- Join Us👬:
- Slack:Join our Slack community and chat with other community members about ideas
- WeChat:join our WeChat community and chat with other community members about ideas
We sincerely appreciate the open-sourced capabilities in EasyEdge as we adopt it for the SDK generation and download in this project.
FastDeploy is provided under the Apache-2.0.