Skip to content

Latest commit

 

History

History
335 lines (251 loc) · 52.1 KB

README_한국인.md

File metadata and controls

335 lines (251 loc) · 52.1 KB

English | 简体中文 | हिन्दी | 日本語 | 한국인 | Pу́сский язы́к

⚡️FastDeploy

설치 | 문서 사용하기 | API문서 | 로그 업데이트

⚡Fastdeploy 장면쉽게 유연 한 극,효율적 AI 추리 도구 가 배치 돼 있다.📦 제공 개표 즉의구름을 단부처 체험 지원 넘 🔥 150 +text,비전,speech다른 모드모델 🔚 실현에 차 려 단'의 추리 성능 최적화 한다.이미지 분류, 객체 검출, 이미지 분할, 얼굴 검출, 얼굴 인식, 포인트 검출, 퍼팅, OCR, NLP, TTS 등의 작업을 포함하고 있어 개발자의다중 장면, 다중 하드웨어, 다중 플랫폼을 위한 산업 배치 요구를 충족시킨다.

Image Classification Object Detection Semantic Segmentation Potrait Segmentation
Image Matting Real-Time Matting OCR Face Alignment
Pose Estimation Behavior Recognition NLP Speech

input :早上好今天是2020
/10/29,最低温度是-3°C。

output:

지역 사회 교류

  • Slack:Join our Slack community and chat with other community members about ideas

  • 위챗: QR 코드를 스캔하고 설문지를 기입하여 기술 커뮤니티에 가입하며 커뮤니티 개발자와 함께 배치의 통점과 방안을 토론한다

목록

🖥️ 서비스 배포

파이썬 SDK 빠른 시작 (자세한내용은 클릭)

빠른 설치

선행의존성
  • CUDA >= 11.2、cuDNN >= 8.0、Python >= 3.6
  • OS: Linux x86_64/macOS/Windows 10
GPU 버전을 설치합니다
pip install numpy opencv-python fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2
CPU 버전 설치
pip install numpy opencv-python fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html

Python 추리 예제

  • 모형과 그림을 준비하다
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
  • 테스트 추론 결과
# GPU/TensorRT 배치 참조 examples/vision/detection/paddledetection/python
import cv2
import fastdeploy.vision as vision

model = vision.detection.PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
                                 "ppyoloe_crn_l_300e_coco/model.pdiparams",
                                 "ppyoloe_crn_l_300e_coco/infer_cfg.yml")
im = cv2.imread("000000014439.jpg")
result = model.predict(im.copy())
print(result)

vis_im = vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
C++ SDK 빠른 시작 (클릭 후 자세히 보기)

설치

C++ 라이브러리 다운로드참조u

C++ 추론 예제

  • 모형과 그림을 준비하다
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
  • 추리 결과를 테스트하다
// GPU/TensorRT배치 참조examples/vision/detection/paddledetection/cpp
#include "fastdeploy/vision.h"

int main(int argc, char* argv[]) {
  namespace vision = fastdeploy::vision;
  auto model = vision::detection::PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
                                          "ppyoloe_crn_l_300e_coco/model.pdiparams",
                                          "ppyoloe_crn_l_300e_coco/infer_cfg.yml");
  auto im = cv::imread("000000014439.jpg");

  vision::DetectionResult res;
  model.Predict(&im, &res);

  auto vis_im = vision::Visualize::VisDetection(im, res, 0.5);
  cv::imwrite("vis_image.jpg", vis_im);
  return 0;
}

더 많은 배치 사례를 참고하시기 바랍니다 모델 배포 예제.

서비스 모델 지원 목록🔥🔥🔥🔥🔥

부호 설명: (1) ✅: 지원 되여 있어야 한다; (2) ❔:진행 중이다; (3) N/A:지원되지 않습니다;

서비스 모델 지원 목록 (누르면 축소 가능)
작업 장면 모형 Linux Linux Win Win Mac Mac Linux Linux Linux Linux Linux
--- --- X86 CPU NVIDIA GPU X86 CPU NVIDIA GPU X86 CPU Arm CPU AArch64 CPU Phytium D2000CPU NVIDIA Jetson Graphcore IPU Serving
Classification PaddleClas/ResNet50
Classification TorchVison/ResNet
Classification ltralytics/YOLOv5Cls
Classification PaddleClas/PP-LCNet
Classification PaddleClas/PP-LCNetv2
Classification PaddleClas/EfficientNet
Classification PaddleClas/GhostNet
Classification PaddleClas/MobileNetV1
Classification PaddleClas/MobileNetV2
Classification PaddleClas/MobileNetV3
Classification PaddleClas/ShuffleNetV2
Classification PaddleClas/SqueeezeNetV1.1
Classification PaddleClas/Inceptionv3
Classification PaddleClas/PP-HGNet
Detection PaddleDetection/PP-YOLOE
Detection PaddleDetection/PicoDet
Detection PaddleDetection/YOLOX
Detection PaddleDetection/YOLOv3
Detection PaddleDetection/PP-YOLO
Detection PaddleDetection/PP-YOLOv2
Detection PaddleDetection/Faster-RCNN
Detection PaddleDetection/Mask-RCNN
Detection Megvii-BaseDetection/YOLOX
Detection WongKinYiu/YOLOv7
Detection WongKinYiu/YOLOv7end2end_trt
Detection WongKinYiu/YOLOv7end2end_ort_
Detection meituan/YOLOv6
Detection ultralytics/YOLOv5
Detection WongKinYiu/YOLOR
Detection WongKinYiu/ScaledYOLOv4
Detection ppogg/YOLOv5Lite
Detection RangiLyu/NanoDetPlus
KeyPoint PaddleDetection/TinyPose
KeyPoint PaddleDetection/PicoDet + TinyPose
HeadPose omasaht/headpose
Tracking PaddleDetection/PP-Tracking
OCR PaddleOCR/PP-OCRv2
OCR PaddleOCR/PP-OCRv3
Segmentation PaddleSeg/PP-LiteSeg
Segmentation PaddleSeg/PP-HumanSegLite
Segmentation PaddleSeg/HRNet
Segmentation PaddleSeg/PP-HumanSegServer
Segmentation PaddleSeg/Unet
Segmentation PaddleSeg/Deeplabv3
FaceDetection biubug6/RetinaFace
FaceDetection Linzaer/UltraFace
FaceDetection deepcam-cn/YOLOv5Face
FaceDetection insightface/SCRFD
FaceAlign Hsintao/PFLD
FaceAlign Single430FaceLandmark1000
FaceAlign jhb86253817/PIPNet
FaceRecognition insightface/ArcFace
FaceRecognition insightface/CosFace
FaceRecognition insightface/PartialFC
FaceRecognition insightface/VPL
Matting ZHKKKe/MODNet
Matting PeterL1n/RobustVideoMatting
Matting PaddleSeg/PP-Matting
Matting PaddleSeg/PP-HumanMatting
Matting PaddleSeg/ModNet
Video Super-Resolution PaddleGAN/BasicVSR
Video Super-Resolution PaddleGAN/EDVR
Video Super-Resolution PaddleGAN/PP-MSVSR
Information Extraction PaddleNLP/UIE
NLP PaddleNLP/ERNIE-3.0
Speech PaddleSpeech/PP-TTS --

📲 모바일 및 측면 배치 🔥🔥🔥🔥

측면 모델 지원 목록

측면 모델 지원 목록 (누르면 축소 가능)
작업 장면 모형 크기(MB) Linux Android Linux Linux Linux Linux Linux TBD...
--- --- --- ARM CPU ARM CPU Rockchip-NPU
RK3568/RK3588
Rockchip-NPU
RV1109/RV1126/RK1808
Amlogic-NPU
A311D/S905D/C308X
NXP-NPU
i.MX 8M Plus
TBD...|
Classification PaddleClas/ResNet50 98
Classification PaddleClas/PP-LCNet 11.9 -- -- --
Classification PaddleClas/PP-LCNetv2 26.6 -- -- --
Classification PaddleClas/EfficientNet 31.4 -- -- --
Classification PaddleClas/GhostNet 20.8 -- -- --
Classification PaddleClas/MobileNetV1 17 -- -- --
Classification PaddleClas/MobileNetV2 14.2 -- -- --
Classification PaddleClas/MobileNetV3 22 --
Classification PaddleClas/ShuffleNetV2 9.2 -- -- --
Classification PaddleClas/SqueezeNetV1.1 5 -- -- --
Classification PaddleClas/Inceptionv3 95.5 -- -- --
Classification PaddleClas/PP-HGNet 59 -- -- --
Detection PaddleDetection/PicoDet_s 4.9 --
Face Detection deepinsight/SCRFD 2.5 -- -- -- --
Keypoint Detection PaddleDetection/PP-TinyPose 5.5 --
Segmentation PaddleSeg/PP-LiteSeg(STDC1) 32.2 -- -- -- --
Segmentation PaddleSeg/PP-HumanSeg-Lite 0.556 -- -- -- --
Segmentation PaddleSeg/HRNet-w18 38.7 -- -- -- --
Segmentation PaddleSeg/PP-HumanSeg 107.2 -- -- -- --
Segmentation PaddleSeg/Unet 53.7 -- -- -- --
Segmentation PaddleSeg/Deeplabv3 150
OCR PaddleOCR/PP-OCRv2 2.3+4.4 -- -- -- --
OCR PaddleOCR/PP-OCRv3 2.4+10.6 --

🌐 🌐 웹과 애플 릿 포치

웹 및 애플릿 배포 지원 목록 (누르면 축소)
작업 장면 모형 web_demo
--- --- Paddle.js
Detection FaceDetection
Detection ScrewDetection
Segmentation PaddleSeg/HumanSeg
Object Recognition GestureRecognition
Object Recognition ItemIdentification
OCR PaddleOCR/PP-OCRv3

Acknowledge

이 프로젝트의 SDK 생성 및 다운로드는 EasyEdge (https://ai.baidu.com/easyedge/app/openSource) 의 무료 오픈 기능을 사용하여 진행되었습니다. 이에 감사드립니다.

License

Fastdeploy 컴플라이언스 Apache e-2.0 오픈 소스 프로토콜