forked from Blealtan/RWKV-LM-LoRA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
118 lines (90 loc) · 5.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import os
# if False: # True False ---> Set to False if you don't understand it
# print("\n\n[[[ SPECIAL DEBUG MODE FOR MYSELF. DON'T ENABLE THIS IF YOU DON'T UNDERSTAND IT ]]]\n\n")
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# import src.utils
# src.utils.set_seed(42) # make training deterministic (including dataloader). if you are doing this, remember to change seed when you load a model (otherwise the dataloader loads old samples)
import logging
import datetime
from src.model import GPT, GPTConfig
from src.trainer import Trainer, TrainerConfig
from src.utils import Dataset
import torch
import numpy as np
np.set_printoptions(precision=4, suppress=True, linewidth=200)
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO,)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
### Step 1: set training data ##########################################################################
datafile = "../data/enwik8" # your data
datafile_encoding = 'utf-8'
# datafile_encoding = 'utf-16le'
### Step 2: set model size #############################################################################
# ----> test deeper models (n_layer at least 12) to see the advantage of RWKV-3 over RWKV-2
ctx_len = 1024 # increase T_MAX in model.py if your ctx_len > 1024
n_layer = 6
n_embd = 512
# 'RWKV' (better for English) or 'RWKV-ffnPre' (better in some cases)
model_type = 'RWKV'
# ---> there is a RWKV_HEAD_QK_DIM in model.py and model_run.py
# set it to 256, then it's using my headQK trick (similar to a tiny attention) to improve loss
# set it to 0, then it's a pure RNN (attention-free)
### Step 3: set batch size #############################################################################
# ---> batch_size must be divisible by B_GROUP_FORWARD and B_GROUP_BACKWARD in model.py
# for example, if your batch_size = 20, you can set B_GROUP_FORWARD = 4, B_GROUP_BACKWARD = 2
# if you see "CUDA out of memory", reduce batch_size. Use nvidia-smi to find the highest value for your GPU.
batch_size = 12
### Step 4: set learning rate, number of mini-epochs #######################################################
# By default we are using exponential LR decay.
#
# Here are my suggestions for training a good model.
# Let's say you will train a L6-D512 model.
# 1) Set lr_init = lr_final = 8e-4. Let it run for some mini-epochs, until the improvement of loss become slow.
# 2) Check epoch_save_frequency and make sure the partially-trained model is saved. Ctrl+C to stop the run.
# 3) Set lr_init = 8e-4, lr_final = 1e-5, warmup_tokens = ctx_len * batch_size * 50, betas = (0.9, 0.999).
# 4) Search for "torch.load" here and modify it to load the partially-trained model. Continue the training.
#
# For L12-D768, set lr_init = 6e-4. For L24-D1024, set lr_init = 4e-4. For L24-D2048, set lr_init = 3e-4.
lr_init = 8e-4 # we can use larger lr because of preLN
lr_final = 1e-5
# the mini-epoch is very short and of fixed length (length = ctx_len * epoch_length_fixed tokens)
n_epoch = 500
epoch_length_fixed = 10000
# 0 = never, 1 = every mini-epoch, 2 = every two mini-epochs, ...
epoch_save_frequency = 10
epoch_save_path = 'trained-'
########################################################################################################
grad_norm_clip = 1.0
warmup_tokens = ctx_len * batch_size * 0
betas = (0.9, 0.99)
eps = 4e-9
num_workers = 0
########################################################################################################
# Load data
########################################################################################################
print('loading data... ' + datafile)
train_dataset = Dataset(open(
datafile, "r", encoding=datafile_encoding).read(), ctx_len, epoch_length_fixed)
########################################################################################################
# Train model
########################################################################################################
if __name__ == '__main__':
model = GPT(GPTConfig(train_dataset.vocab_size, train_dataset.ctx_len, model_type=model_type,
n_layer=n_layer, n_embd=n_embd)).cuda()
### ---> load a trained model <---
# m2 = torch.load('trained-61.pth')
# model.load_state_dict(m2)
print('model', model_type, 'epoch', n_epoch, 'batchsz', batch_size, 'betas',
betas, 'eps', eps, 'ctx', ctx_len, 'layer', n_layer, 'embd', n_embd, )
tconf = TrainerConfig(model_type=model_type, max_epochs=n_epoch, batch_size=batch_size,
learning_rate=lr_init, lr_decay=True, lr_final=lr_final, betas=betas, eps=eps, grad_norm_clip=grad_norm_clip,
warmup_tokens=warmup_tokens, final_tokens=n_epoch*len(train_dataset)*ctx_len, num_workers=num_workers, epoch_save_frequency=epoch_save_frequency, epoch_save_path=epoch_save_path)
trainer = Trainer(model, train_dataset, None, tconf)
trainer.train()
torch.save(model.state_dict(), 'trained-' + str(n_epoch) + '-' + trainer.get_run_name() +
'-' + datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S') + '.pth')