给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node
的新值等于原树中大于或等于 node.val
的值之和。
提醒一下,二叉搜索树满足下列约束条件:
- 节点的左子树仅包含键 小于 节点键的节点。
- 节点的右子树仅包含键 大于 节点键的节点。
- 左右子树也必须是二叉搜索树。
注意:该题目与 538: https://leetcode-cn.com/problems/convert-bst-to-greater-tree/ 相同
示例 1:
输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8] 输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
示例 2:
输入:root = [0,null,1] 输出:[1,null,1]
示例 3:
输入:root = [1,0,2] 输出:[3,3,2]
示例 4:
输入:root = [3,2,4,1] 输出:[7,9,4,10]
提示:
- 树中的节点数介于
1
和100
之间。 - 每个节点的值介于
0
和100
之间。 - 树中的所有值 互不相同 。
- 给定的树为二叉搜索树。
二叉搜索树的中序遍历(左根右)结果是一个单调递增的有序序列,我们反序进行中序遍历(右根左),即可以得到一个单调递减的有序序列。通过累加单调递减的有序序列,我们可以得到大于等于 node.val 的新值,并重新赋值给 node。
关于反序中序遍历,有三种方法,一是递归遍历,二是栈实现非递归遍历,三是 Morris 遍历。
递归遍历:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
add = 0
def bstToGst(self, root: TreeNode) -> TreeNode:
if root:
self.bstToGst(root.right)
root.val += self.add
self.add = root.val
self.bstToGst(root.left)
return root
Morris 遍历:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def bstToGst(self, root: TreeNode) -> TreeNode:
s = 0
node = root
while root:
if root.right is None:
s += root.val
root.val = s
root = root.left
else:
next = root.right
while next.left and next.left != root:
next = next.left
if next.left is None:
next.left = root
root = root.right
else:
s += root.val
root.val = s
next.left = None
root = root.left
return node
递归遍历:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int add = 0;
public TreeNode bstToGst(TreeNode root) {
if (root != null) {
bstToGst(root.right);
root.val += add;
add = root.val;
bstToGst(root.left);
}
return root;
}
}
Morris 遍历:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode bstToGst(TreeNode root) {
int s = 0;
TreeNode node = root;
while (root != null) {
if (root.right == null) {
s += root.val;
root.val = s;
root = root.left;
} else {
TreeNode next = root.right;
while (next.left != null && next.left != root) {
next = next.left;
}
if (next.left == null) {
next.left = root;
root = root.right;
} else {
s += root.val;
root.val = s;
next.left = null;
root = root.left;
}
}
}
return node;
}
}
递归遍历:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int add = 0;
TreeNode* bstToGst(TreeNode* root) {
if (root) {
bstToGst(root->right);
root->val += add;
add = root->val;
bstToGst(root->left);
}
return root;
}
};
Morris 遍历:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* bstToGst(TreeNode* root) {
int s = 0;
TreeNode* node = root;
while (root)
{
if (root->right == nullptr) {
s += root->val;
root->val = s;
root = root->left;
}
else
{
TreeNode* next = root->right;
while (next->left && next->left != root)
{
next = next->left;
}
if (next->left == nullptr)
{
next->left = root;
root = root->right;
}
else
{
s += root->val;
root->val = s;
next->left = nullptr;
root = root->left;
}
}
}
return node;
}
};
递归遍历:
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func bstToGst(root *TreeNode) *TreeNode {
add := 0
var dfs func(*TreeNode)
dfs = func(node *TreeNode) {
if node != nil {
dfs(node.Right)
node.Val += add
add = node.Val
dfs(node.Left)
}
}
dfs(root)
return root
}
Morris 遍历:
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func bstToGst(root *TreeNode) *TreeNode {
s := 0
node := root
for root != nil {
if root.Right == nil {
s += root.Val
root.Val = s
root = root.Left
} else {
next := root.Right
for next.Left != nil && next.Left != root {
next = next.Left
}
if next.Left == nil {
next.Left = root
root = root.Right
} else {
s += root.Val
root.Val = s
next.Left = nil
root = root.Left
}
}
}
return node
}