forked from TheAlgorithms/C-Plus-Plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimax.cpp
61 lines (56 loc) · 2.07 KB
/
minimax.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
/**
* @file
* @brief returns which is the longest/shortest number
* using [minimax](https://en.wikipedia.org/wiki/Minimax) algorithm
*
* @details
* Minimax (sometimes MinMax, MM or saddle point) is a decision rule used in
* artificial intelligence, decision theory, game theory, statistics,
* and philosophy for minimizing the possible loss for a worst case (maximum loss) scenario.
* When dealing with gains, it is referred to as "maximin"—to maximize the minimum gain.
* Originally formulated for two-player zero-sum game theory, covering both the cases where players take
* alternate moves and those where they make simultaneous moves, it has also been extended to more
* complex games and to general decision-making in the presence of uncertainty.
*
* @author [Gleison Batista](https://github.com/gleisonbs)
* @author [David Leal](https://github.com/Panquesito7)
*/
#include <algorithm>
#include <cmath>
#include <iostream>
#include <array>
/**
* @namespace backtracking
* @brief Backtracking algorithms
*/
namespace backtracking {
/**
* Check which number is the maximum/minimum in the array
* @param depth current depth in game tree
* @param node_index current index in array
* @param is_max if current index is the longest number
* @param scores saved numbers in array
* @param height maximum height for game tree
* @return maximum or minimum number
*/
template <size_t T>
int minimax(int depth, int node_index, bool is_max,
const std::array<int, T> &scores, double height) {
if (depth == height) {
return scores[node_index];
}
int v1 = minimax(depth + 1, node_index * 2, !is_max, scores, height);
int v2 = minimax(depth + 1, node_index * 2 + 1, !is_max, scores, height);
return is_max ? std::max(v1, v2) : std::min(v1, v2);
}
} // namespace backtracking
/**
* Main function
*/
int main() {
std::array<int, 8> scores = {90, 23, 6, 33, 21, 65, 123, 34423};
double height = log2(scores.size());
std::cout << "Optimal value: " << backtracking::minimax(0, 0, true, scores, height)
<< std::endl;
return 0;
}