forked from gbeced/pyalgotrade
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtechnical_hurst_test.py
72 lines (59 loc) · 2.4 KB
/
technical_hurst_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# PyAlgoTrade
#
# Copyright 2011-2018 Gabriel Martin Becedillas Ruiz
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
.. moduleauthor:: Gabriel Martin Becedillas Ruiz <[email protected]>
"""
import numpy as np
from . import common
from pyalgotrade.technical import hurst
from pyalgotrade import dataseries
def build_hurst(values, period, minLags, maxLags):
ds = dataseries.SequenceDataSeries()
ret = hurst.HurstExponent(ds, period, minLags, maxLags)
for value in values:
ds.append(value)
return ret
class TestCase(common.TestCase):
def testHurstExpFunRandomWalk(self):
values = np.cumsum(np.random.randn(50000)) + 1000
h = hurst.hurst_exp(np.log10(values), 2, 20)
self.assertEquals(round(h, 1), 0.5)
def testHurstExpFunTrending(self):
values = np.cumsum(np.random.randn(50000)+1) + 1000
h = hurst.hurst_exp(np.log10(values), 2, 20)
self.assertEquals(round(h), 1)
def testHurstExpFunMeanRev(self):
values = (np.random.randn(50000)) + 1000
h = hurst.hurst_exp(np.log10(values), 2, 20)
self.assertEquals(round(h), 0)
def testRandomWalk(self):
num_values = 10000
values = np.cumsum(np.random.randn(num_values)) + 1000
hds = build_hurst(values, num_values - 10, 2, 20)
self.assertEquals(round(hds[-1], 1), 0.5)
self.assertEquals(round(hds[-2], 1), 0.5)
def testTrending(self):
num_values = 10000
values = np.cumsum(np.random.randn(num_values) + 10) + 1000
hds = build_hurst(values, num_values - 10, 2, 20)
self.assertEquals(round(hds[-1], 1), 1)
self.assertEquals(round(hds[-2], 1), 1)
def testMeanRev(self):
num_values = 10000
values = np.random.randn(num_values) + 100
hds = build_hurst(values, num_values - 10, 2, 20)
self.assertEquals(round(hds[-1], 1), 0)
self.assertEquals(round(hds[-2], 1), 0)