forked from taichi-dev/taichi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
254 lines (188 loc) · 5.21 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy as np
import random
import taichi as ti
import pickle
# ti.runtime.print_preprocessed = True
# ti.cfg.print_ir = True
input = ti.var(ti.f32)
weight1 = ti.var(ti.f32)
output1 = ti.var(ti.f32)
output1_nonlinear = ti.var(ti.f32)
weight2 = ti.var(ti.f32)
output = ti.var(ti.f32)
output_exp = ti.var(ti.f32)
output_softmax = ti.var(ti.f32)
softmax_sum = ti.var(ti.f32)
gt = ti.var(ti.f32)
loss = ti.var(ti.f32)
learning_rate = ti.var(ti.f32)
n_input = 28**2
n_hidden = 500
n_output = 10
ti.root.dense(ti.i, n_input).place(input)
ti.root.dense(ti.ij, (n_input, n_hidden)).place(weight1)
ti.root.dense(ti.i, n_hidden).place(output1)
ti.root.dense(ti.i, n_hidden).place(output1_nonlinear)
ti.root.dense(ti.ij, (n_hidden, n_output)).place(weight2)
ti.root.dense(ti.i, n_output).place(gt)
ti.root.dense(ti.i, n_output).place(output)
ti.root.dense(ti.i, n_output).place(output_exp)
ti.root.dense(ti.i, n_output).place(output_softmax)
ti.root.place(softmax_sum)
ti.root.place(loss, learning_rate)
ti.root.lazy_grad()
@ti.kernel
def init_weights1():
for i in range(n_input):
for j in range(n_hidden):
weight1[i, j] = ti.random() * 0.005
@ti.kernel
def init_weights2():
for i in range(n_hidden):
for j in range(n_output):
weight2[i, j] = ti.random() * 0.005
@ti.kernel
def clear_weight1_grad():
for i in range(n_input):
for j in range(n_hidden):
weight1.grad[i, j] = 0
@ti.kernel
def clear_weight2_grad():
for i in range(n_hidden):
for j in range(n_output):
weight2.grad[i, j] = 0
def clear_output1():
for i in range(n_hidden):
output1[i] = 0
output1_nonlinear[i] = 0
output1.grad[i] = 0
output1_nonlinear.grad[i] = 0
def clear_output2():
for i in range(n_output):
output[i] = 0
output_exp[i] = 0
output_softmax[i] = 0
output.grad[i] = 0
output_exp.grad[i] = 0
output_softmax.grad[i] = 0
def layer(func):
layer.list.append(func)
layer.list = []
@layer
@ti.kernel
def w1():
for i in range(n_input):
for j in range(n_hidden):
output1[j].atomic_add(input[i] * weight1[i, j])
@layer
@ti.kernel
def nonlinear1():
for i in range(n_hidden):
output1_nonlinear[i] = ti.tanh(output1[i])
@layer
@ti.kernel
def w2():
for i in range(n_hidden):
for j in range(n_output):
output[j].atomic_add(output1_nonlinear[i] * weight2[i, j])
@layer
@ti.kernel
def nonlinear2():
for i in range(n_output):
output_exp[i] = ti.exp(output[i])
@layer
@ti.kernel
def reduce():
for i in range(n_output):
softmax_sum.atomic_add(output_exp[i] + 1e-6)
@layer
@ti.kernel
def softmax():
for i in range(n_output):
output_softmax[i] = output_exp[i] / softmax_sum
@layer
@ti.kernel
def xent():
for i in range(n_output):
loss.atomic_add(-gt[i] * ti.log(output_softmax[i]) +
(gt[i] - 1) * ti.log(1 - output_softmax[i]))
@ti.kernel
def gd_w1():
for i in range(n_input):
for j in range(n_hidden):
weight1[i, j] -= learning_rate * weight1.grad[i, j]
@ti.kernel
def gd_w2():
for i in range(n_hidden):
for j in range(n_output):
weight2[i, j] -= learning_rate * weight2.grad[i, j]
try:
f = open('mnist.pkl', 'rb')
except FileNotFoundError:
raise FileNotFoundError(
'mnist.pkl not found, please run examples/mnist_download_data.py first.'
)
with f:
mnist = pickle.load(f)
training_images = mnist['training_images']
training_labels = mnist['training_labels']
test_images = mnist['test_images']
test_labels = mnist['test_labels']
init_weights1()
init_weights2()
def test_accuracy():
ntest = len(test_images) // 10
acc = 0
for k in range(ntest):
img = test_images[k]
for i in range(n_input):
input[i] = img[i] / 255
for j in range(n_output):
gt[j] = int(test_labels[k] == j)
clear_output1()
clear_output2()
clear_weight1_grad()
clear_weight2_grad()
loss[None] = 0
for f in layer.list:
f()
logits = []
for j in range(n_output):
logits.append(output[j])
pred = logits.index(max(logits))
acc += int(pred == test_labels[k])
return acc / ntest
losses = []
accs = []
niter = 10000
for k in range(niter):
learning_rate = 5e-3 * (0.1**(2 * k // niter))
img_id = random.randrange(0, len(training_images))
img = training_images[img_id]
for i in range(n_input):
input[i] = img[i] / 255
for j in range(n_output):
gt[j] = int(training_labels[img_id] == j)
clear_output1()
clear_output2()
clear_weight1_grad()
clear_weight2_grad()
softmax_sum[None] = 0
loss[None] = 0
for f in layer.list:
f()
l = loss[None]
losses.append(l)
losses = losses[-100:]
if k % 100 == 0:
print('k =', k, ' loss : ', sum(losses) / len(losses))
if k % 1000 == 0:
acc = test_accuracy()
print('test accuracy: {:.2f}%'.format(100 * acc))
accs.append(acc)
loss.grad[None] = 1
softmax_sum.grad[None] = 0
for f in reversed(layer.list):
f.grad()
gd_w1()
gd_w2()