forked from adambielski/siamese-triplet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
194 lines (144 loc) · 7.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from itertools import combinations
import numpy as np
import torch
def pdist(vectors):
distance_matrix = -2 * vectors.mm(torch.t(vectors)) + vectors.pow(2).sum(dim=1).view(1, -1) + vectors.pow(2).sum(
dim=1).view(-1, 1)
return distance_matrix
class PairSelector:
"""
Implementation should return indices of positive pairs and negative pairs that will be passed to compute
Contrastive Loss
return positive_pairs, negative_pairs
"""
def __init__(self):
pass
def get_pairs(self, embeddings, labels):
raise NotImplementedError
class AllPositivePairSelector(PairSelector):
"""
Discards embeddings and generates all possible pairs given labels.
If balance is True, negative pairs are a random sample to match the number of positive samples
"""
def __init__(self, balance=True):
super(AllPositivePairSelector, self).__init__()
self.balance = balance
def get_pairs(self, embeddings, labels):
labels = labels.cpu().data.numpy()
all_pairs = np.array(list(combinations(range(len(labels)), 2)))
all_pairs = torch.LongTensor(all_pairs)
positive_pairs = all_pairs[(labels[all_pairs[:, 0]] == labels[all_pairs[:, 1]]).nonzero()]
negative_pairs = all_pairs[(labels[all_pairs[:, 0]] != labels[all_pairs[:, 1]]).nonzero()]
if self.balance:
negative_pairs = negative_pairs[torch.randperm(len(negative_pairs))[:len(positive_pairs)]]
return positive_pairs, negative_pairs
class HardNegativePairSelector(PairSelector):
"""
Creates all possible positive pairs. For negative pairs, pairs with smallest distance are taken into consideration,
matching the number of positive pairs.
"""
def __init__(self, cpu=True):
super(HardNegativePairSelector, self).__init__()
self.cpu = cpu
def get_pairs(self, embeddings, labels):
if self.cpu:
embeddings = embeddings.cpu()
distance_matrix = pdist(embeddings)
labels = labels.cpu().data.numpy()
all_pairs = np.array(list(combinations(range(len(labels)), 2)))
all_pairs = torch.LongTensor(all_pairs)
positive_pairs = all_pairs[(labels[all_pairs[:, 0]] == labels[all_pairs[:, 1]]).nonzero()]
negative_pairs = all_pairs[(labels[all_pairs[:, 0]] != labels[all_pairs[:, 1]]).nonzero()]
negative_distances = distance_matrix[negative_pairs[:, 0], negative_pairs[:, 1]]
negative_distances = negative_distances.cpu().data.numpy()
top_negatives = np.argpartition(negative_distances, len(positive_pairs))[:len(positive_pairs)]
top_negative_pairs = negative_pairs[torch.LongTensor(top_negatives)]
return positive_pairs, top_negative_pairs
class TripletSelector:
"""
Implementation should return indices of anchors, positive and negative samples
return np array of shape [N_triplets x 3]
"""
def __init__(self):
pass
def get_triplets(self, embeddings, labels):
raise NotImplementedError
class AllTripletSelector(TripletSelector):
"""
Returns all possible triplets
May be impractical in most cases
"""
def __init__(self):
super(AllTripletSelector, self).__init__()
def get_triplets(self, embeddings, labels):
labels = labels.cpu().data.numpy()
triplets = []
for label in set(labels):
label_mask = (labels == label)
label_indices = np.where(label_mask)[0]
if len(label_indices) < 2:
continue
negative_indices = np.where(np.logical_not(label_mask))[0]
anchor_positives = list(combinations(label_indices, 2)) # All anchor-positive pairs
# Add all negatives for all positive pairs
temp_triplets = [[anchor_positive[0], anchor_positive[1], neg_ind] for anchor_positive in anchor_positives
for neg_ind in negative_indices]
triplets += temp_triplets
return torch.LongTensor(np.array(triplets))
def hardest_negative(loss_values):
hard_negative = np.argmax(loss_values)
return hard_negative if loss_values[hard_negative] > 0 else None
def random_hard_negative(loss_values):
hard_negatives = np.where(loss_values > 0)[0]
return np.random.choice(hard_negatives) if len(hard_negatives) > 0 else None
def semihard_negative(loss_values, margin):
semihard_negatives = np.where(np.logical_and(loss_values < margin, loss_values > 0))[0]
return np.random.choice(semihard_negatives) if len(semihard_negatives) > 0 else None
class FunctionNegativeTripletSelector(TripletSelector):
"""
For each positive pair, takes the hardest negative sample (with the greatest triplet loss value) to create a triplet
Margin should match the margin used in triplet loss.
negative_selection_fn should take array of loss_values for a given anchor-positive pair and all negative samples
and return a negative index for that pair
"""
def __init__(self, margin, negative_selection_fn, cpu=True):
super(FunctionNegativeTripletSelector, self).__init__()
self.cpu = cpu
self.margin = margin
self.negative_selection_fn = negative_selection_fn
def get_triplets(self, embeddings, labels):
if self.cpu:
embeddings = embeddings.cpu()
distance_matrix = pdist(embeddings)
distance_matrix = distance_matrix.cpu()
labels = labels.cpu().data.numpy()
triplets = []
for label in set(labels):
label_mask = (labels == label)
label_indices = np.where(label_mask)[0]
if len(label_indices) < 2:
continue
negative_indices = np.where(np.logical_not(label_mask))[0]
anchor_positives = list(combinations(label_indices, 2)) # All anchor-positive pairs
anchor_positives = np.array(anchor_positives)
ap_distances = distance_matrix[anchor_positives[:, 0], anchor_positives[:, 1]]
for anchor_positive, ap_distance in zip(anchor_positives, ap_distances):
loss_values = ap_distance - distance_matrix[torch.LongTensor(np.array([anchor_positive[0]])), torch.LongTensor(negative_indices)] + self.margin
loss_values = loss_values.data.cpu().numpy()
hard_negative = self.negative_selection_fn(loss_values)
if hard_negative is not None:
hard_negative = negative_indices[hard_negative]
triplets.append([anchor_positive[0], anchor_positive[1], hard_negative])
if len(triplets) == 0:
triplets.append([anchor_positive[0], anchor_positive[1], negative_indices[0]])
triplets = np.array(triplets)
return torch.LongTensor(triplets)
def HardestNegativeTripletSelector(margin, cpu=False): return FunctionNegativeTripletSelector(margin=margin,
negative_selection_fn=hardest_negative,
cpu=cpu)
def RandomNegativeTripletSelector(margin, cpu=False): return FunctionNegativeTripletSelector(margin=margin,
negative_selection_fn=random_hard_negative,
cpu=cpu)
def SemihardNegativeTripletSelector(margin, cpu=False): return FunctionNegativeTripletSelector(margin=margin,
negative_selection_fn=lambda x: semihard_negative(x, margin),
cpu=cpu)