Keras implementation of MaskRNN instance aware segmentation as described in Mask R-CNN by Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, using RetinaNet as base.
This repository doesn't strictly implement MaskRCNN as described in their paper. The difference is that their paper describes using a RPN to propose ROIs and to use those ROIs to perform bounding box regression, classification and mask estimation simultaneously. Instead, this repository uses RetinaNet to do the bounding box regression and classification and builds a mask estimation head on top of those predictions.
In theory RetinaNet can be configured to act as a RPN network, which would then be identical to MaskRCNN, but doing so would require more layers and complexity than is actually necessary. Less is more :)
- Clone this repository.
- Install keras-retinanet (
pip install keras-retinanet --user
). Make suretensorflow
is installed and is using the GPU. - Optionally, install
pycocotools
if you want to train / test on the MS COCO dataset by runningpip install --user git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI
. - Run
pip install keras-maskrcnn --user
to install the latest release, or runpip install . --user
in the repository to install that specific version..
An example of testing the network can be seen in this Notebook. In general, inference of the network works as follows:
outputs = model.predict_on_batch(inputs)
boxes = outputs[-4]
scores = outputs[-3]
labels = outputs[-2]
masks = outputs[-1]
Where boxes
are shaped (None, None, 4)
(for (x1, y1, x2, y2)
), scores is shaped (None, None)
(classification score), labels is shaped (None, None)
(label corresponding to the score) and masks is shaped (None, None, 28, 28)
. In all three outputs, the first dimension represents the shape and the second dimension indexes the list of detections.
Loading models can be done in the following manner:
from keras_maskrcnn.models import load_model
model = load_model('/path/to/model.h5', backbone_name='resnet50')
Execution time on NVIDIA Pascal Titan X is roughly 175msec for an image of shape 1000x800x3
.
Example output images using keras-maskrcnn
are shown below.
keras-maskrcnn
can be trained using this script.
Note that the train script uses relative imports since it is inside the keras_maskrcnn
package.
If you want to adjust the script for your own use outside of this repository,
you will need to switch it to use absolute imports.
For training on MS COCO, run:
# Running directly from the repository:
./keras_maskrcnn/bin/train.py coco /path/to/MS/COCO
# Using the installed script:
maskrcn-train coco /path/to/MS/COCO
The pretrained MS COCO model can be downloaded here. Results using the cocoapi
are shown below (note: the closest resembling architecture in the MaskRCNN paper achieves an mAP of 0.336).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.278
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.488
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.286
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.127
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.312
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.392
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.251
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.386
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.405
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.219
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.452
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.565
For training on a [custom dataset], a CSV file can be used as a way to pass the data. See below for more details on the format of these CSV files. To train using your CSV, run:
# Running directly from the repository:
./keras_maskrcnn/bin/train.py csv /path/to/csv/file/containing/annotations /path/to/csv/file/containing/classes
# Using the installed script:
maskrcnn-train csv /path/to/csv/file/containing/annotations /path/to/csv/file/containing/classes
The CSVGenerator
provides an easy way to define your own datasets.
It uses two CSV files: one file containing annotations and one file containing a class name to ID mapping.
The CSV file with annotations should contain one annotation per line. Images with multiple bounding boxes should use one row per bounding box. Note that indexing for pixel values starts at 0. The expected format of each line is:
path/to/image.jpg,x1,y1,x2,y2,class_name,/path/to/mask.png
Some images may not contain any labeled objects.
To add these images to the dataset as negative examples,
add an annotation where x1
, y1
, x2
, y2
, class_name
and mask
are all empty:
path/to/image.jpg,,,,,,
A full example:
/data/imgs/img_001.jpg,837,346,981,456,cow,/data/masks/img_001_001.png
/data/imgs/img_002.jpg,215,312,279,391,cat,/data/masks/img_002_001.png
/data/imgs/img_002.jpg,22,5,89,84,bird,/data/masks/img_002_002.png
/data/imgs/img_003.jpg,,,,,,
This defines a dataset with 3 images.
img_001.jpg
contains a cow.
img_002.jpg
contains a cat and a bird.
img_003.jpg
contains no interesting objects/animals.
The class name to ID mapping file should contain one mapping per line. Each line should use the following format:
class_name,id
Indexing for classes starts at 0. Do not include a background class as it is implicit.
For example:
cow,0
cat,1
bird,2
Feel free to join the #keras-maskrcnn
Keras Slack channel for discussions and questions.