-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathcomplex_plot.c
684 lines (580 loc) · 16.9 KB
/
complex_plot.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/* This file is public domain. Author: Fredrik Johansson. */
#include <string.h>
#include "acb.h"
#include "acb_hypgeom.h"
#include "acb_modular.h"
#include "acb_elliptic.h"
#include "flint/profiler.h"
/* some useful color operations */
#define CLAMP(y) FLINT_MAX(0.0, FLINT_MIN((y), 1.0))
#define BLEND(x,y) (0.5*(x) + 0.5*(y))
#define DODGE(a,b) ((a) / ((1.0 - (b)) + 1/256.0))
/* HLS algorithm from python's colorsys module */
static double
vv(double m1, double m2, double hue)
{
hue = hue - floor(hue);
if (hue < 1/6.)
return m1 + (m2-m1)*hue*6.0;
if (hue < 0.5)
return m2;
if (hue < 2/3.)
return m1 + (m2-m1)*(2/3.-hue)*6.0;
return m1;
}
static void
hls_to_rgb(double *R, double *G, double *B, double h, double l, double s)
{
double m1, m2;
if (s == 0.0)
{
*R = *G = *B = l;
return;
}
if (l <= 0.5)
m2 = l * (1.0+s);
else
m2 = l+s-(l*s);
m1 = 2.0*l - m2;
*R = vv(m1, m2, h + 1/3.);
*G = vv(m1, m2, h);
*B = vv(m1, m2, h - 1/3.);
}
static void
rgb_to_hls(double *H, double *L, double *S, double R, double G, double B)
{
double h, l, s, hi, lo, d;
hi = FLINT_MAX(FLINT_MAX(R, G), B);
lo = FLINT_MIN(FLINT_MIN(R, G), B);
l = 0.5 * (lo + hi);
d = hi - lo;
if (hi == lo)
{
s = 0.0;
h = 0.0;
}
else
{
if (l <= 0.5)
s = d / (hi + lo);
else
s = d / (2.0 - hi - lo);
if (d == 0.0)
d = 1.0;
if (R == hi)
h = (G - B) / d;
else if (G == hi)
h = (B - R) / d + 2.0;
else
h = (R - G) / d + 4.0;
h = h / 6.0;
if (h < 0.0)
h += 1.0;
}
*H = h;
*L = l;
*S = s;
}
/* color balance algorithm from gimp */
static double balance_channel(double value, double l,
double shadows, double midtones, double highlights)
{
double a = 0.25, b = 0.333, scale = 0.7;
shadows *= CLAMP((l - b) / (-a) + 0.5) * scale;
midtones *= CLAMP((l - b) / ( a) + 0.5) *
CLAMP((l + b - 1.0) / (-a) + 0.5) * scale;
highlights *= CLAMP((l + b - 1.0) / ( a) + 0.5) * scale;
value += shadows;
value += midtones;
value += highlights;
return CLAMP(value);
}
static void balance(double * R, double * G, double * B,
double ra, double rb, double rc, /* red shadows, midtones, highlights */
double ga, double gb, double gc, /* green */
double ba, double bb, double bc) /* blue */
{
double h, l, s;
double h2, l2, s2;
rgb_to_hls(&h, &l, &s, *R, *G, *B);
*R = balance_channel(*R, *R, ra, rb, rc);
*G = balance_channel(*G, *G, ga, gb, gc);
*B = balance_channel(*B, *B, ba, bb, bc);
/* preserve lightness */
rgb_to_hls(&h2, &l2, &s2, *R, *G, *B);
hls_to_rgb(R, G, B, h2, l, s2);
}
#define PI 3.1415926535898
const double blue_orange_colors[][4] = {
{-1.0, 0.0, 0.0, 0.0},
{-0.95, 0.1, 0.2, 0.5},
{-0.5, 0.0, 0.5, 1.0},
{-0.05, 0.4, 0.8, 0.8},
{ 0.0, 1.0, 1.0, 1.0},
{ 0.05, 1.0, 0.9, 0.3},
{ 0.5, 0.9, 0.5, 0.0},
{ 0.95, 0.7, 0.1, 0.0},
{ 1.0, 0.0, 0.0, 0.0},
{ 2.0, 0.0, 0.0, 0.0},
};
void
color_function(double * R, double * G, double * B, const acb_t z, int mode)
{
double H, L, S;
slong prec, i;
arb_t t, u;
if (!acb_is_finite(z) || acb_rel_accuracy_bits(z) < 4)
{
*R = *G = *B = 0.5;
return;
}
if (mode >= 2)
{
double R1, G1, B1;
double R2, G2, B2;
/* combine both color functions */
color_function(&R1, &G1, &B1, z, 0);
color_function(&R2, &G2, &B2, z, 1);
*R = BLEND(R1, CLAMP(DODGE(R1, R2)));
*G = BLEND(G1, CLAMP(DODGE(G1, G2)));
*B = BLEND(B1, CLAMP(DODGE(B1, B2)));
/* then play with the levels */
if (mode == 3)
balance(R, G, B, 0.0, -0.5, 0.2, 0.0, 0.0, -0.1, 0.0, -1.0, -0.2);
else if (mode == 4)
balance(R, G, B, 0.0, -0.5, 0.2, 0.0, 0.5, -0.1, 0.0, -0.3, -1.0);
else if (mode == 5)
balance(R, G, B, 0.0, -0.5, -1.0, 0.0, -0.1, -0.67, 0.0, -0.55, -0.12);
else if (mode == 6)
balance(R, G, B, 0.86, 0.0, 0.13, 0.57, 0.19, -0.52, 0.31, -0.30, -0.94);
return;
}
arb_init(t);
arb_init(u);
prec = 32;
arf_set_round(arb_midref(t), arb_midref(acb_realref(z)), prec, ARF_RND_DOWN);
arf_set_round(arb_midref(u), arb_midref(acb_imagref(z)), prec, ARF_RND_DOWN);
arb_atan2(t, u, t, prec);
H = arf_get_d(arb_midref(t), ARF_RND_DOWN);
if (mode == 0)
{
H = (H + PI) / (2 * PI) + 0.5;
H = H - floor(H);
acb_abs(t, z, prec);
if (arf_cmpabs_2exp_si(arb_midref(t), 200) > 0)
{
L = 1.0;
}
else if (arf_cmpabs_2exp_si(arb_midref(t), -200) < 0)
{
L = 0.0;
}
else
{
L = arf_get_d(arb_midref(t), ARF_RND_DOWN);
L = 1.0 - 1.0/(1.0 + pow(L, 0.2));
}
S = 0.8;
hls_to_rgb(R, G, B, H, L, S);
}
else
{
H = H / PI;
H = FLINT_MAX(FLINT_MIN(H, 1.0), -1.0);
for (i = 1; ; i++)
{
if (blue_orange_colors[i][0] > H)
{
double a, ra, ga, ba, b, rb, gb, bb, s;
a = blue_orange_colors[i-1][0];
ra = blue_orange_colors[i-1][1];
ga = blue_orange_colors[i-1][2];
ba = blue_orange_colors[i-1][3];
b = blue_orange_colors[i][0];
rb = blue_orange_colors[i][1];
gb = blue_orange_colors[i][2];
bb = blue_orange_colors[i][3];
s = (H - a) / (b - a);
*R = ra + (rb - ra) * s;
*G = ga + (gb - ga) * s;
*B = ba + (bb - ba) * s;
break;
}
}
}
arb_clear(t);
arb_clear(u);
}
typedef void (*func_ptr)(acb_t, const acb_t, slong);
void
ai(acb_t res, const acb_t z, slong prec)
{
acb_hypgeom_airy(res, NULL, NULL, NULL, z, prec);
}
void
bi(acb_t res, const acb_t z, slong prec)
{
acb_hypgeom_airy(NULL, NULL, res, NULL, z, prec);
}
void
besselj(acb_t res, const acb_t z, slong prec)
{
acb_t nu;
acb_init(nu);
acb_hypgeom_bessel_j(res, nu, z, prec);
acb_clear(nu);
}
void
bessely(acb_t res, const acb_t z, slong prec)
{
acb_t nu;
acb_init(nu);
acb_hypgeom_bessel_y(res, nu, z, prec);
acb_clear(nu);
}
void
besseli(acb_t res, const acb_t z, slong prec)
{
acb_t nu;
acb_init(nu);
acb_hypgeom_bessel_i(res, nu, z, prec);
acb_clear(nu);
}
void
besselk(acb_t res, const acb_t z, slong prec)
{
acb_t nu;
acb_init(nu);
acb_hypgeom_bessel_k(res, nu, z, prec);
acb_clear(nu);
}
/* this function looks better when scaled */
void
modj(acb_t res, const acb_t z, slong prec)
{
acb_modular_j(res, z, prec);
acb_div_ui(res, res, 1728, prec);
}
void
modjq(acb_t res, const acb_t z, slong prec)
{
acb_t t;
acb_init(t);
acb_log(res, z, prec);
acb_const_pi(t, prec);
acb_div(res, res, t, prec);
acb_mul_2exp_si(res, res, -1);
acb_div_onei(res, res);
acb_modular_j(res, res, prec);
acb_div_ui(res, res, 1728, prec);
acb_clear(t);
}
void
modetaq(acb_t res, const acb_t z, slong prec)
{
acb_t t;
acb_init(t);
acb_log(res, z, prec);
acb_const_pi(t, prec);
acb_div(res, res, t, prec);
acb_mul_2exp_si(res, res, -1);
acb_div_onei(res, res);
acb_modular_eta(res, res, prec);
acb_clear(t);
}
void
modlambdaq(acb_t res, const acb_t z, slong prec)
{
acb_t t;
acb_init(t);
acb_log(res, z, prec);
acb_const_pi(t, prec);
acb_div(res, res, t, prec);
acb_mul_2exp_si(res, res, -1);
acb_div_onei(res, res);
acb_modular_lambda(res, res, prec);
acb_clear(t);
}
void
ellipp(acb_t res, const acb_t z, slong prec)
{
acb_onei(res);
acb_elliptic_p(res, z, res, prec);
}
void
ellipzeta(acb_t res, const acb_t z, slong prec)
{
acb_onei(res);
acb_elliptic_zeta(res, z, res, prec);
}
void
ellipsigma(acb_t res, const acb_t z, slong prec)
{
acb_onei(res);
acb_elliptic_sigma(res, z, res, prec);
}
void
fresnels(acb_t res, const acb_t z, slong prec)
{
acb_hypgeom_fresnel(res, NULL, z, 0, prec);
}
void
fresnelc(acb_t res, const acb_t z, slong prec)
{
acb_hypgeom_fresnel(NULL, res, z, 0, prec);
}
typedef struct
{
arf_ptr xa;
arf_ptr xb;
arf_ptr ya;
arf_ptr yb;
slong xnum;
slong ynum;
slong y;
func_ptr func;
unsigned char * buf;
int color_mode;
}
work_t;
void worker(slong x, work_t * work)
{
slong prec;
acb_t z, w;
arf_ptr xa, xb, ya, yb;
slong xnum, ynum, y;
double R, G, B;
acb_init(z);
acb_init(w);
xa = work->xa;
xb = work->xb;
ya = work->ya;
yb = work->yb;
xnum = work->xnum;
ynum = work->ynum;
ynum = ynum; /* unused */
y = work->y;
for (prec = 30; prec < 500; prec *= 2)
{
arf_sub(arb_midref(acb_imagref(z)), yb, ya, prec, ARF_RND_DOWN);
arf_mul_ui(arb_midref(acb_imagref(z)),
arb_midref(acb_imagref(z)), y, prec, ARF_RND_DOWN);
arf_div_ui(arb_midref(acb_imagref(z)),
arb_midref(acb_imagref(z)), ynum - 1, prec, ARF_RND_DOWN);
arf_add(arb_midref(acb_imagref(z)),
arb_midref(acb_imagref(z)), ya, prec, ARF_RND_DOWN);
arf_sub(arb_midref(acb_realref(z)), xb, xa, prec, ARF_RND_DOWN);
arf_mul_ui(arb_midref(acb_realref(z)),
arb_midref(acb_realref(z)), x, prec, ARF_RND_DOWN);
arf_div_ui(arb_midref(acb_realref(z)),
arb_midref(acb_realref(z)), xnum - 1, prec, ARF_RND_DOWN);
arf_add(arb_midref(acb_realref(z)),
arb_midref(acb_realref(z)), xa, prec, ARF_RND_DOWN);
work->func(w, z, prec);
if (acb_rel_accuracy_bits(w) > 4)
break;
}
color_function(&R, &G, &B, w, work->color_mode);
work->buf[3 * (y * xnum + x) + 0] = FLINT_MIN(255, floor(R * 255));
work->buf[3 * (y * xnum + x) + 1] = FLINT_MIN(255, floor(G * 255));
work->buf[3 * (y * xnum + x) + 2] = FLINT_MIN(255, floor(B * 255));
acb_clear(z);
acb_clear(w);
}
int main(int argc, char *argv[])
{
slong x, y, xnum, ynum, i;
double dxa, dxb, dya, dyb;
FILE * fp;
arf_t xa, xb, ya, yb;
acb_t z, w;
func_ptr func;
int color_mode;
unsigned char * buf;
slong num_threads;
if (argc < 2)
{
printf("complex_plot [-range xa xb ya yb] [-size xn yn] [-color n] [-threads n] <func>\n\n");
printf("Plots one of the predefined functions on [xa,xb] + [ya,yb]i\n");
printf("using domain coloring, at a resolution of xn by yn pixels.\n\n");
printf("Defaults parameters are [-10,10] + [-10,10]i and xn = yn = 512.\n\n");
printf("A color function can be selected with -color. The choices are:\n");
printf("0 phase=hue, magnitude=brightness\n");
printf("1 phase only, white-gold-black-blue-white counterclockwise\n");
printf("2 0+1 (dodge filter)\n");
printf("3 0+1, shiny\n");
printf("4 0+1, warm\n");
printf("5 0+1, cold\n");
printf("6 0+1, tomato\n\n");
printf("The output is written to arbplot.ppm. If you have ImageMagick,\n");
printf("run [convert arbplot.ppm arbplot.png] to get a PNG.\n\n");
printf("Function codes <func> are:\n");
printf(" sin - Sine\n");
printf(" gamma - Gamma function\n");
printf(" digamma - Digamma function\n");
printf(" lgamma - Logarithmic gamma function\n");
printf(" zeta - Riemann zeta function\n");
printf(" erf - Error function\n");
printf(" ai - Airy function Ai\n");
printf(" bi - Airy function Bi\n");
printf(" besselj - Bessel function J_0\n");
printf(" bessely - Bessel function Y_0\n");
printf(" besseli - Bessel function I_0\n");
printf(" besselk - Bessel function K_0\n");
printf(" modj - Modular j-function\n");
printf(" modjq - Modular j-function (as function of q)\n");
printf(" modeta - Dedekind eta function\n");
printf(" modetaq - Dedekind eta function (as function of q)\n");
printf(" modlambda - Modular lambda function\n");
printf(" modlambdaq - Modular lambda function (as function of q)\n");
printf(" ellipp - Weierstrass elliptic function (on square lattice)\n");
printf(" ellipzeta - Weierstrass elliptic function (on square lattice)\n");
printf(" ellipsigma - Weierstrass elliptic function (on square lattice)\n");
printf(" barnesg - Barnes G-function\n");
printf(" agm - Arithmetic geometric mean\n");
printf(" fresnels - Fresnel integral S\n");
printf(" fresnelc - Fresnel integral C\n\n");
return 1;
}
xnum = 512;
ynum = 512;
dxa = dya = -10;
dxb = dyb = 10;
func = acb_gamma;
color_mode = 0;
num_threads = 1;
for (i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "-size"))
{
xnum = atol(argv[i+1]);
ynum = atol(argv[i+2]);
i += 2;
}
else if (!strcmp(argv[i], "-range"))
{
dxa = atof(argv[i+1]);
dxb = atof(argv[i+2]);
dya = atof(argv[i+3]);
dyb = atof(argv[i+4]);
i += 4;
}
else if (!strcmp(argv[i], "-color"))
{
color_mode = atoi(argv[i+1]);
i++;
}
else if (!strcmp(argv[i], "-threads"))
{
num_threads = atol(argv[i+1]);
i++;
}
else if (!strcmp(argv[i], "sin"))
func = acb_sin;
else if (!strcmp(argv[i], "gamma"))
func = acb_gamma;
else if (!strcmp(argv[i], "digamma"))
func = acb_digamma;
else if (!strcmp(argv[i], "lgamma"))
func = acb_lgamma;
else if (!strcmp(argv[i], "zeta"))
func = acb_zeta;
else if (!strcmp(argv[i], "erf"))
func = acb_hypgeom_erf;
else if (!strcmp(argv[i], "ai"))
func = ai;
else if (!strcmp(argv[i], "bi"))
func = bi;
else if (!strcmp(argv[i], "besselj"))
func = besselj;
else if (!strcmp(argv[i], "bessely"))
func = bessely;
else if (!strcmp(argv[i], "besseli"))
func = besseli;
else if (!strcmp(argv[i], "besselk"))
func = besselk;
else if (!strcmp(argv[i], "modj"))
func = modj;
else if (!strcmp(argv[i], "modjq"))
func = modjq;
else if (!strcmp(argv[i], "modeta"))
func = acb_modular_eta;
else if (!strcmp(argv[i], "modetaq"))
func = modetaq;
else if (!strcmp(argv[i], "modlambda"))
func = acb_modular_lambda;
else if (!strcmp(argv[i], "modlambdaq"))
func = modlambdaq;
else if (!strcmp(argv[i], "ellipp"))
func = ellipp;
else if (!strcmp(argv[i], "ellipzeta"))
func = ellipzeta;
else if (!strcmp(argv[i], "ellipsigma"))
func = ellipsigma;
else if (!strcmp(argv[i], "barnesg"))
func = acb_barnes_g;
else if (!strcmp(argv[i], "agm"))
func = acb_agm1;
else if (!strcmp(argv[i], "fresnels"))
func = fresnels;
else if (!strcmp(argv[i], "fresnelc"))
func = fresnelc;
else
{
printf("unknown option: %s\n", argv[i]);
return 1;
}
}
acb_init(z);
acb_init(w);
arf_init(xa);
arf_init(xb);
arf_init(ya);
arf_init(yb);
arf_set_d(xa, dxa);
arf_set_d(xb, dxb);
arf_set_d(ya, dya);
arf_set_d(yb, dyb);
buf = flint_malloc(3 * xnum * ynum);
flint_set_num_threads(num_threads);
TIMEIT_ONCE_START
for (y = ynum - 1; y >= 0; y--)
{
work_t work;
if (y % (ynum / 16) == 0)
printf("row %ld\n", y);
work.xa = xa;
work.xb = xb;
work.ya = ya;
work.yb = yb;
work.xnum = xnum;
work.ynum = ynum;
work.y = y;
work.func = func;
work.buf = buf;
work.color_mode = color_mode;
flint_parallel_do((do_func_t) worker, &work, xnum, num_threads, FLINT_PARALLEL_STRIDED);
}
TIMEIT_ONCE_STOP
fp = fopen("arbplot.ppm", "w");
fprintf(fp, "P6\n%ld %ld 255\n", xnum, ynum);
for (y = ynum - 1; y >= 0; y--)
{
for (x = 0; x < xnum; x++)
{
fputc(buf[3 * (y * xnum + x) + 0], fp);
fputc(buf[3 * (y * xnum + x) + 1], fp);
fputc(buf[3 * (y * xnum + x) + 2], fp);
}
}
flint_free(buf);
fclose(fp);
arf_clear(xa);
arf_clear(xb);
arf_clear(ya);
arf_clear(yb);
acb_clear(z);
acb_clear(w);
flint_cleanup_master();
return 0;
}