-
Notifications
You must be signed in to change notification settings - Fork 251
/
Copy pathhnf_minors.c
173 lines (157 loc) · 5.24 KB
/
hnf_minors.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
Copyright (C) 2014 Alex J. Best
Copyright (C) 2017 Tommy Hofmann
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version. See <https://www.gnu.org/licenses/>.
*/
#include "fmpz.h"
#include "fmpz_mat.h"
/*
This is the algorithm of Kannan, Bachem, "Polynomial algorithms for computing
the Smith and Hermite normal forms of an integer matrix", Siam J. Comput.,
Vol. 8, No. 4, pp. 499-507.
*/
void
fmpz_mat_hnf_minors(fmpz_mat_t H, const fmpz_mat_t A)
{
slong j, j2, i, k, l, m, n;
fmpz_t u, v, d, r2d, r1d, q, b;
m = fmpz_mat_nrows(A);
n = fmpz_mat_ncols(A);
fmpz_init(u);
fmpz_init(v);
fmpz_init(d);
fmpz_init(r1d);
fmpz_init(r2d);
fmpz_init(q);
fmpz_init(b);
fmpz_mat_set(H, A);
/* put the kth principal minor in HNF */
for (k = 0, l = m - 1; k < n; k++)
{
for (j = 0; j < k; j++)
{
if (fmpz_is_zero(fmpz_mat_entry(H, k, j)))
{
continue;
}
fmpz_xgcd(d, u, v, fmpz_mat_entry(H, j, j),
fmpz_mat_entry(H, k, j));
if (fmpz_cmpabs(d, fmpz_mat_entry(H, j, j)) == 0)
{
fmpz_divexact(b, fmpz_mat_entry(H, k, j), fmpz_mat_entry(H, j, j));
for (j2 = j; j2 < n; j2++)
{
fmpz_submul(fmpz_mat_entry(H, k, j2), b, fmpz_mat_entry(H, j, j2));
}
continue;
}
fmpz_divexact(r1d, fmpz_mat_entry(H, j, j), d);
fmpz_divexact(r2d, fmpz_mat_entry(H, k, j), d);
for (j2 = j; j2 < n; j2++)
{
fmpz_mul(b, u, fmpz_mat_entry(H, j, j2));
fmpz_addmul(b, v, fmpz_mat_entry(H, k, j2));
fmpz_mul(fmpz_mat_entry(H, k, j2), r1d,
fmpz_mat_entry(H, k, j2));
fmpz_submul(fmpz_mat_entry(H, k, j2), r2d,
fmpz_mat_entry(H, j, j2));
fmpz_set(fmpz_mat_entry(H, j, j2), b);
}
}
/* if H_k,k is zero we swap row k for some other row (starting with the
last) */
if (fmpz_is_zero(fmpz_mat_entry(H, k, k)))
{
fmpz_mat_swap_rows(H, NULL, k, l);
l--;
k--;
continue;
}
/* ensure H_k,k is positive */
if (fmpz_sgn(fmpz_mat_entry(H, k, k)) < 0)
{
for (j = k; j < n; j++)
{
fmpz_neg(fmpz_mat_entry(H, k, j), fmpz_mat_entry(H, k, j));
}
}
/* reduce above diagonal elements of each row i */
for (i = k - 1; i >= 0; i--)
{
for (j = i + 1; j <= k; j++)
{
fmpz_fdiv_q(q, fmpz_mat_entry(H, i, j),
fmpz_mat_entry(H, j, j));
if (fmpz_is_zero(q))
{
continue;
}
for (j2 = j; j2 < n; j2++)
{
fmpz_submul(fmpz_mat_entry(H, i, j2), q,
fmpz_mat_entry(H, j, j2));
}
}
}
l = m - 1;
}
/* reduce final rows */
for (k = n; k < m; k++)
{
for (j = 0; j < n; j++)
{
fmpz_xgcd(d, u, v, fmpz_mat_entry(H, j, j),
fmpz_mat_entry(H, k, j));
if (fmpz_cmpabs(d, fmpz_mat_entry(H, j, j)) == 0)
{
fmpz_divexact(b, fmpz_mat_entry(H, k, j), fmpz_mat_entry(H, j, j));
for (j2 = j; j2 < n; j2++)
{
fmpz_submul(fmpz_mat_entry(H, k, j2), b, fmpz_mat_entry(H, j, j2));
}
continue;
}
fmpz_divexact(r1d, fmpz_mat_entry(H, j, j), d);
fmpz_divexact(r2d, fmpz_mat_entry(H, k, j), d);
for (j2 = j; j2 < n; j2++)
{
fmpz_mul(b, u, fmpz_mat_entry(H, j, j2));
fmpz_addmul(b, v, fmpz_mat_entry(H, k, j2));
fmpz_mul(fmpz_mat_entry(H, k, j2), r1d,
fmpz_mat_entry(H, k, j2));
fmpz_submul(fmpz_mat_entry(H, k, j2), r2d,
fmpz_mat_entry(H, j, j2));
fmpz_set(fmpz_mat_entry(H, j, j2), b);
}
}
/* reduce above diagonal elements of each row i */
for (i = n - 1; i >= 0; i--)
{
for (j = i + 1; j < n; j++)
{
fmpz_fdiv_q(q, fmpz_mat_entry(H, i, j),
fmpz_mat_entry(H, j, j));
if (fmpz_is_zero(q))
{
continue;
}
for (j2 = j; j2 < n; j2++)
{
fmpz_submul(fmpz_mat_entry(H, i, j2), q,
fmpz_mat_entry(H, j, j2));
}
}
}
}
fmpz_clear(b);
fmpz_clear(q);
fmpz_clear(r2d);
fmpz_clear(r1d);
fmpz_clear(d);
fmpz_clear(v);
fmpz_clear(u);
}