forked from Pomax/bezierinfo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BezierComputer.pde
executable file
·460 lines (423 loc) · 38.3 KB
/
BezierComputer.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/***************************************************
* *
* A special computer class for generic operations *
* *
***************************************************/
/**
* static computation class
*/
class BezierComputer {
// LUT for how many de Casteljau's interpolation markers are required.
private int[] marks = {0};
// Look up how many markers are there in de Casteljau's span for order ...?
private int markers(int n) {
if(n>marks.length-1) {
marks = new int[2*n];
for(int i=0, v=0; i<marks.length; i++) {
v += i;
marks[i] = v;
}
}
return marks[n];
}
// LUT for binomial coefficient arrays per curve order 'n'
private float[][] binomial_coefficients = {{1},{1,1}};
// Look up what the binomial coefficient is for pair {n,k}
private float binomials(int n, int k) {
while(n >= binomial_coefficients.length) {
int s = binomial_coefficients.length;
float[][] update_coefficients = new float[s+1][];
arrayCopy(binomial_coefficients,0,update_coefficients,0,s);
float[] current = binomial_coefficients[s-1];
float[] next = new float[s+1];
update_coefficients[s] = next;
// fill in "next" row
next[0] = 1;
for(int i=1; i<current.length; i++) {
next[i] = current[i] + current[i-1];
}
next[s] = 1;
// swap
binomial_coefficients = update_coefficients;
}
return binomial_coefficients[n][k];
}
// compute a polynomial term {n,k} at t
private float polyterm(int n, int k, float t) {
return pow((1-t),n-k) * pow(t,k);
}
/**
* Compute the curve value at t
*/
float getValue(float t, float[] v) {
int order = v.length-1;
float value = 0;
for(int n=order, k=0; k<=n; k++) {
if(v[k]==0) continue;
value += binomials(n,k) * polyterm(n,k,t) * v[k];
}
return value;
}
/**
* Compute the curve derivative (hodograph) at t.
*/
float getDerivative(int derivative, float t, float[] v) {
// the derivative of any 't'-less function is zero.
int n = v.length-1;
if(n==0) { return 0; }
// direct values? compute!
if(derivative==0) {
float value = 0;
for(int k=0; k<=n; k++) {
value += binomials(n,k) * pow(1-t,n-k) * pow(t,k) * v[k];
}
return value;
}
// Still some derivative? go down one order, then try
// for the lower order curve's.
else {
float[] _v = new float[v.length-1];
for(int k=0; k<_v.length; k++) {
_v[k] = n * (v[k+1] - v[k]);
}
return getDerivative(derivative-1, t, _v);
}
}
/**
* quadratic (A-B):(B-C) ratio function
* NOTE: this function only generates a meaningful
* result for 2nd and 3rd order curves. For
* anything else it'll throw an error.
*/
float calculateProjectionRatio(float t, int order) throws NoRatioExistsException {
float tn, mtn, n, d;
if(order==2) {
tn = 2*pow(t,2);
mtn = 2*t;
n = tn - mtn;
d = n + 1;
} else if (order == 3) {
tn = pow(t,3);
mtn = pow(1-t,3);
d = tn + mtn;
n = d - 1;
} else { throw new NoRatioExistsException(order); }
return abs(d/n);
}
/**
* Generate a 2nd or 3rd order Bezier curve from three points.
* NOTE: the 't' value for the midpoint is optional.
*/
BezierCurve generateCurve(int order, Point p1, Point p2, Point p3) {
return generateCurve(order, p1, p2, p3, 0.5);
}
BezierCurve generateCurve(int order, Point p1, Point p2, Point p3, float t) {
Point tangent = new Point((p1.x-p3.x)/((order-1)*2), (p1.y-p3.y)/((order-1)*2));
Point[] tangents = {tangent, tangent.scale(-1)};
return generateCurve(order, p1, p2, p3, t, tangents);
}
BezierCurve generateCurve(int order, Point p1, Point p2, Point p3, float t, Point[] tangents) {
Point[] points = (order==2? new Point[]{p1,p2,p3} : new Point[]{p1,p2,p2,p3});
BezierCurve curve = new BezierCurve(points);
points = curve.points;
float ratio = calculateProjectionRatio(t, order);
Point[] span = curve.generateSpan(t);
Point[] ds = curve.getABC(t);
if(order==2) { points[1] = new Point(p2.x - ratio*(ds[2].x-p2.x), p2.y - ratio*(ds[2].y-p2.y)); }
else if(order==3) {
Point helper = new Point(p2.x - ratio*(ds[2].x-p2.x), p2.y - ratio*(ds[2].y-p2.y));
Point[] controls = getCubicControls(helper,p2,t,span,tangents);
points[1] = controls[0];
points[2] = controls[1];
} else { return null; }
curve.update();
return curve;
}
// construct sensible 3rd order control points when generating a cubic curve off of three points.
private Point[] getCubicControls(Point NA, Point NB, float t, Point[] span, Point[] tangents) {
float mt = 1-t, dx = tangents[0].x, dy = tangents[0].y;
Point new7 = new Point(NB.x + dx, NB.y + dy);
dx = -tangents[1].x;
dy = -tangents[1].y;
Point new8 = new Point(NB.x - dx, NB.y - dy);
// reverse De Casteljau
dx = t * (new7.x - NA.x) / mt;
dy = t * (new7.y - NA.y) / mt;
Point new4 = new Point(new7.x + dx, new7.y + dy);
dx = mt * (new8.x - NA.x) / t;
dy = mt * (new8.y - NA.y) / t;
Point new6 = new Point(new8.x + dx, new8.y + dy);
// reverse De Casteljau for the new control points
dx = mt * (new4.x - span[0].x) / t;
dy = mt * (new4.y - span[0].y) / t;
Point c1 = new Point(new4.x + dx, new4.y + dy);
dx = t * (new6.x - span[3].x) / mt;
dy = t * (new6.y - span[3].y) / mt;
Point c2 = new Point(new6.x + dx, new6.y + dy);
return new Point[]{c1, c2};
}
/**
* Arc length computation, using the Legendre-Guass quadrature approach.
* If no length can be computed due to a lack of T/C values, return -1
* to signify "I cannot compute this value for you".
*/
float getArcLength(float[] x_values, float[] y_values) { return getArcLength(1, x_values, y_values); }
float getArcLength(float t, float[] x_values, float[] y_values) { return getArcLength(t, 24, x_values, y_values); }
float getArcLength(float t, int n, float[] x_values, float[] y_values) {
if(x_values.length-1 >= Tvalues.length) return -1; // errp
float z = t/2;
float sum = 0;
for(int i=0; i<n; i++) {
float corrected_t = z * Tvalues[n][i] + z;
sum += Cvalues[n][i] * B(corrected_t, x_values, y_values);
}
return z * sum;
}
// LGQ function for Bezier curve arc length
private float B(float t, float[] x_values, float[] y_values) {
float xbase = comp.getDerivative(1,t,x_values);
float ybase = comp.getDerivative(1,t,y_values);
float combined = xbase*xbase + ybase*ybase;
return sqrt(combined);
}
// Legendre-Gauss abscissae (xi values, defined at i=n as the roots of the nth order Legendre polynomial Pn(x))
private float[][] Tvalues = {{},{},
{ -0.5773502691896257645091487805019574556476,0.5773502691896257645091487805019574556476},
{0,-0.7745966692414833770358530799564799221665,0.7745966692414833770358530799564799221665},
{ -0.3399810435848562648026657591032446872005,0.3399810435848562648026657591032446872005,-0.8611363115940525752239464888928095050957,0.8611363115940525752239464888928095050957},
{0,-0.5384693101056830910363144207002088049672,0.5384693101056830910363144207002088049672,-0.9061798459386639927976268782993929651256,0.9061798459386639927976268782993929651256},
{ 0.6612093864662645136613995950199053470064,-0.6612093864662645136613995950199053470064,-0.2386191860831969086305017216807119354186,0.2386191860831969086305017216807119354186,-0.9324695142031520278123015544939946091347,0.9324695142031520278123015544939946091347},
{0, 0.4058451513773971669066064120769614633473,-0.4058451513773971669066064120769614633473,-0.7415311855993944398638647732807884070741,0.7415311855993944398638647732807884070741,-0.9491079123427585245261896840478512624007,0.9491079123427585245261896840478512624007},
{ -0.1834346424956498049394761423601839806667,0.1834346424956498049394761423601839806667,-0.5255324099163289858177390491892463490419,0.5255324099163289858177390491892463490419,-0.7966664774136267395915539364758304368371,0.7966664774136267395915539364758304368371,-0.9602898564975362316835608685694729904282,0.9602898564975362316835608685694729904282},
{0,-0.8360311073266357942994297880697348765441,0.8360311073266357942994297880697348765441,-0.9681602395076260898355762029036728700494,0.9681602395076260898355762029036728700494,-0.3242534234038089290385380146433366085719,0.3242534234038089290385380146433366085719,-0.6133714327005903973087020393414741847857,0.6133714327005903973087020393414741847857},
{ -0.1488743389816312108848260011297199846175,0.1488743389816312108848260011297199846175,-0.4333953941292471907992659431657841622000,0.4333953941292471907992659431657841622000,-0.6794095682990244062343273651148735757692,0.6794095682990244062343273651148735757692,-0.8650633666889845107320966884234930485275,0.8650633666889845107320966884234930485275,-0.9739065285171717200779640120844520534282,0.9739065285171717200779640120844520534282},
{0,-0.2695431559523449723315319854008615246796,0.2695431559523449723315319854008615246796,-0.5190961292068118159257256694586095544802,0.5190961292068118159257256694586095544802,-0.7301520055740493240934162520311534580496,0.7301520055740493240934162520311534580496,-0.8870625997680952990751577693039272666316,0.8870625997680952990751577693039272666316,-0.9782286581460569928039380011228573907714,0.9782286581460569928039380011228573907714},
{ -0.1252334085114689154724413694638531299833,0.1252334085114689154724413694638531299833,-0.3678314989981801937526915366437175612563,0.3678314989981801937526915366437175612563,-0.5873179542866174472967024189405342803690,0.5873179542866174472967024189405342803690,-0.7699026741943046870368938332128180759849,0.7699026741943046870368938332128180759849,-0.9041172563704748566784658661190961925375,0.9041172563704748566784658661190961925375,-0.9815606342467192506905490901492808229601,0.9815606342467192506905490901492808229601},
{0,-0.2304583159551347940655281210979888352115,0.2304583159551347940655281210979888352115,-0.4484927510364468528779128521276398678019,0.4484927510364468528779128521276398678019,-0.6423493394403402206439846069955156500716,0.6423493394403402206439846069955156500716,-0.8015780907333099127942064895828598903056,0.8015780907333099127942064895828598903056,-0.9175983992229779652065478365007195123904,0.9175983992229779652065478365007195123904,-0.9841830547185881494728294488071096110649,0.9841830547185881494728294488071096110649},
{ -0.1080549487073436620662446502198347476119,0.1080549487073436620662446502198347476119,-0.3191123689278897604356718241684754668342,0.3191123689278897604356718241684754668342,-0.5152486363581540919652907185511886623088,0.5152486363581540919652907185511886623088,-0.6872929048116854701480198030193341375384,0.6872929048116854701480198030193341375384,-0.8272013150697649931897947426503949610397,0.8272013150697649931897947426503949610397,-0.9284348836635735173363911393778742644770,0.9284348836635735173363911393778742644770,-0.9862838086968123388415972667040528016760,0.9862838086968123388415972667040528016760},
{0,-0.2011940939974345223006283033945962078128,0.2011940939974345223006283033945962078128,-0.3941513470775633698972073709810454683627,0.3941513470775633698972073709810454683627,-0.5709721726085388475372267372539106412383,0.5709721726085388475372267372539106412383,-0.7244177313601700474161860546139380096308,0.7244177313601700474161860546139380096308,-0.8482065834104272162006483207742168513662,0.8482065834104272162006483207742168513662,-0.9372733924007059043077589477102094712439,0.9372733924007059043077589477102094712439,-0.9879925180204854284895657185866125811469,0.9879925180204854284895657185866125811469},
{ -0.0950125098376374401853193354249580631303,0.0950125098376374401853193354249580631303,-0.2816035507792589132304605014604961064860,0.2816035507792589132304605014604961064860,-0.4580167776572273863424194429835775735400,0.4580167776572273863424194429835775735400,-0.6178762444026437484466717640487910189918,0.6178762444026437484466717640487910189918,-0.7554044083550030338951011948474422683538,0.7554044083550030338951011948474422683538,-0.8656312023878317438804678977123931323873,0.8656312023878317438804678977123931323873,-0.9445750230732325760779884155346083450911,0.9445750230732325760779884155346083450911,-0.9894009349916499325961541734503326274262,0.9894009349916499325961541734503326274262},
{0,-0.1784841814958478558506774936540655574754,0.1784841814958478558506774936540655574754,-0.3512317634538763152971855170953460050405,0.3512317634538763152971855170953460050405,-0.5126905370864769678862465686295518745829,0.5126905370864769678862465686295518745829,-0.6576711592166907658503022166430023351478,0.6576711592166907658503022166430023351478,-0.7815140038968014069252300555204760502239,0.7815140038968014069252300555204760502239,-0.8802391537269859021229556944881556926234,0.8802391537269859021229556944881556926234,-0.9506755217687677612227169578958030214433,0.9506755217687677612227169578958030214433,-0.9905754753144173356754340199406652765077,0.9905754753144173356754340199406652765077},
{ -0.0847750130417353012422618529357838117333,0.0847750130417353012422618529357838117333,-0.2518862256915055095889728548779112301628,0.2518862256915055095889728548779112301628,-0.4117511614628426460359317938330516370789,0.4117511614628426460359317938330516370789,-0.5597708310739475346078715485253291369276,0.5597708310739475346078715485253291369276,-0.6916870430603532078748910812888483894522,0.6916870430603532078748910812888483894522,-0.8037049589725231156824174550145907971032,0.8037049589725231156824174550145907971032,-0.8926024664975557392060605911271455154078,0.8926024664975557392060605911271455154078,-0.9558239495713977551811958929297763099728,0.9558239495713977551811958929297763099728,-0.9915651684209309467300160047061507702525,0.9915651684209309467300160047061507702525},
{0,-0.1603586456402253758680961157407435495048,0.1603586456402253758680961157407435495048,-0.3165640999636298319901173288498449178922,0.3165640999636298319901173288498449178922,-0.4645707413759609457172671481041023679762,0.4645707413759609457172671481041023679762,-0.6005453046616810234696381649462392798683,0.6005453046616810234696381649462392798683,-0.7209661773352293786170958608237816296571,0.7209661773352293786170958608237816296571,-0.8227146565371428249789224867127139017745,0.8227146565371428249789224867127139017745,-0.9031559036148179016426609285323124878093,0.9031559036148179016426609285323124878093,-0.9602081521348300308527788406876515266150,0.9602081521348300308527788406876515266150,-0.9924068438435844031890176702532604935893,0.9924068438435844031890176702532604935893},
{ -0.0765265211334973337546404093988382110047,0.0765265211334973337546404093988382110047,-0.2277858511416450780804961953685746247430,0.2277858511416450780804961953685746247430,-0.3737060887154195606725481770249272373957,0.3737060887154195606725481770249272373957,-0.5108670019508270980043640509552509984254,0.5108670019508270980043640509552509984254,-0.6360536807265150254528366962262859367433,0.6360536807265150254528366962262859367433,-0.7463319064601507926143050703556415903107,0.7463319064601507926143050703556415903107,-0.8391169718222188233945290617015206853296,0.8391169718222188233945290617015206853296,-0.9122344282513259058677524412032981130491,0.9122344282513259058677524412032981130491,-0.9639719272779137912676661311972772219120,0.9639719272779137912676661311972772219120,-0.9931285991850949247861223884713202782226,0.9931285991850949247861223884713202782226},
{0,-0.1455618541608950909370309823386863301163,0.1455618541608950909370309823386863301163,-0.2880213168024010966007925160646003199090,0.2880213168024010966007925160646003199090,-0.4243421202074387835736688885437880520964,0.4243421202074387835736688885437880520964,-0.5516188358872198070590187967243132866220,0.5516188358872198070590187967243132866220,-0.6671388041974123193059666699903391625970,0.6671388041974123193059666699903391625970,-0.7684399634756779086158778513062280348209,0.7684399634756779086158778513062280348209,-0.8533633645833172836472506385875676702761,0.8533633645833172836472506385875676702761,-0.9200993341504008287901871337149688941591,0.9200993341504008287901871337149688941591,-0.9672268385663062943166222149076951614246,0.9672268385663062943166222149076951614246,-0.9937521706203895002602420359379409291933,0.9937521706203895002602420359379409291933},
{ -0.0697392733197222212138417961186280818222,0.0697392733197222212138417961186280818222,-0.2078604266882212854788465339195457342156,0.2078604266882212854788465339195457342156,-0.3419358208920842251581474204273796195591,0.3419358208920842251581474204273796195591,-0.4693558379867570264063307109664063460953,0.4693558379867570264063307109664063460953,-0.5876404035069115929588769276386473488776,0.5876404035069115929588769276386473488776,-0.6944872631866827800506898357622567712673,0.6944872631866827800506898357622567712673,-0.7878168059792081620042779554083515213881,0.7878168059792081620042779554083515213881,-0.8658125777203001365364256370193787290847,0.8658125777203001365364256370193787290847,-0.9269567721871740005206929392590531966353,0.9269567721871740005206929392590531966353,-0.9700604978354287271239509867652687108059,0.9700604978354287271239509867652687108059,-0.9942945854823992920730314211612989803930,0.9942945854823992920730314211612989803930},
{0,-0.1332568242984661109317426822417661370104,0.1332568242984661109317426822417661370104,-0.2641356809703449305338695382833096029790,0.2641356809703449305338695382833096029790,-0.3903010380302908314214888728806054585780,0.3903010380302908314214888728806054585780,-0.5095014778460075496897930478668464305448,0.5095014778460075496897930478668464305448,-0.6196098757636461563850973116495956533871,0.6196098757636461563850973116495956533871,-0.7186613631319501944616244837486188483299,0.7186613631319501944616244837486188483299,-0.8048884016188398921511184069967785579414,0.8048884016188398921511184069967785579414,-0.8767523582704416673781568859341456716389,0.8767523582704416673781568859341456716389,-0.9329710868260161023491969890384229782357,0.9329710868260161023491969890384229782357,-0.9725424712181152319560240768207773751816,0.9725424712181152319560240768207773751816,-0.9947693349975521235239257154455743605736,0.9947693349975521235239257154455743605736},
{ -0.0640568928626056260850430826247450385909,0.0640568928626056260850430826247450385909,-0.1911188674736163091586398207570696318404,0.1911188674736163091586398207570696318404,-0.3150426796961633743867932913198102407864,0.3150426796961633743867932913198102407864,-0.4337935076260451384870842319133497124524,0.4337935076260451384870842319133497124524,-0.5454214713888395356583756172183723700107,0.5454214713888395356583756172183723700107,-0.6480936519369755692524957869107476266696,0.6480936519369755692524957869107476266696,-0.7401241915785543642438281030999784255232,0.7401241915785543642438281030999784255232,-0.8200019859739029219539498726697452080761,0.8200019859739029219539498726697452080761,-0.8864155270044010342131543419821967550873,0.8864155270044010342131543419821967550873,-0.9382745520027327585236490017087214496548,0.9382745520027327585236490017087214496548,-0.9747285559713094981983919930081690617411,0.9747285559713094981983919930081690617411,-0.9951872199970213601799974097007368118745,0.9951872199970213601799974097007368118745}
};
// Legendre-Gauss weights (wi values, defined by a function linked to in the Bezier primer article)
private float[][] Cvalues = {{},{},
{1.0,1.0},
{0.8888888888888888888888888888888888888888,0.5555555555555555555555555555555555555555,0.5555555555555555555555555555555555555555},
{0.6521451548625461426269360507780005927646,0.6521451548625461426269360507780005927646,0.3478548451374538573730639492219994072353,0.3478548451374538573730639492219994072353},
{0.5688888888888888888888888888888888888888,0.4786286704993664680412915148356381929122,0.4786286704993664680412915148356381929122,0.2369268850561890875142640407199173626432,0.2369268850561890875142640407199173626432},
{0.3607615730481386075698335138377161116615,0.3607615730481386075698335138377161116615,0.4679139345726910473898703439895509948116,0.4679139345726910473898703439895509948116,0.1713244923791703450402961421727328935268,0.1713244923791703450402961421727328935268},
{0.4179591836734693877551020408163265306122,0.3818300505051189449503697754889751338783,0.3818300505051189449503697754889751338783,0.2797053914892766679014677714237795824869,0.2797053914892766679014677714237795824869,0.1294849661688696932706114326790820183285,0.1294849661688696932706114326790820183285},
{0.3626837833783619829651504492771956121941,0.3626837833783619829651504492771956121941,0.3137066458778872873379622019866013132603,0.3137066458778872873379622019866013132603,0.2223810344533744705443559944262408844301,0.2223810344533744705443559944262408844301,0.1012285362903762591525313543099621901153,0.1012285362903762591525313543099621901153},
{0.3302393550012597631645250692869740488788,0.1806481606948574040584720312429128095143,0.1806481606948574040584720312429128095143,0.0812743883615744119718921581105236506756,0.0812743883615744119718921581105236506756,0.3123470770400028400686304065844436655987,0.3123470770400028400686304065844436655987,0.2606106964029354623187428694186328497718,0.2606106964029354623187428694186328497718},
{0.2955242247147528701738929946513383294210,0.2955242247147528701738929946513383294210,0.2692667193099963550912269215694693528597,0.2692667193099963550912269215694693528597,0.2190863625159820439955349342281631924587,0.2190863625159820439955349342281631924587,0.1494513491505805931457763396576973324025,0.1494513491505805931457763396576973324025,0.0666713443086881375935688098933317928578,0.0666713443086881375935688098933317928578},
{0.2729250867779006307144835283363421891560,0.2628045445102466621806888698905091953727,0.2628045445102466621806888698905091953727,0.2331937645919904799185237048431751394317,0.2331937645919904799185237048431751394317,0.1862902109277342514260976414316558916912,0.1862902109277342514260976414316558916912,0.1255803694649046246346942992239401001976,0.1255803694649046246346942992239401001976,0.0556685671161736664827537204425485787285,0.0556685671161736664827537204425485787285},
{0.2491470458134027850005624360429512108304,0.2491470458134027850005624360429512108304,0.2334925365383548087608498989248780562594,0.2334925365383548087608498989248780562594,0.2031674267230659217490644558097983765065,0.2031674267230659217490644558097983765065,0.1600783285433462263346525295433590718720,0.1600783285433462263346525295433590718720,0.1069393259953184309602547181939962242145,0.1069393259953184309602547181939962242145,0.0471753363865118271946159614850170603170,0.0471753363865118271946159614850170603170},
{0.2325515532308739101945895152688359481566,0.2262831802628972384120901860397766184347,0.2262831802628972384120901860397766184347,0.2078160475368885023125232193060527633865,0.2078160475368885023125232193060527633865,0.1781459807619457382800466919960979955128,0.1781459807619457382800466919960979955128,0.1388735102197872384636017768688714676218,0.1388735102197872384636017768688714676218,0.0921214998377284479144217759537971209236,0.0921214998377284479144217759537971209236,0.0404840047653158795200215922009860600419,0.0404840047653158795200215922009860600419},
{0.2152638534631577901958764433162600352749,0.2152638534631577901958764433162600352749,0.2051984637212956039659240656612180557103,0.2051984637212956039659240656612180557103,0.1855383974779378137417165901251570362489,0.1855383974779378137417165901251570362489,0.1572031671581935345696019386238421566056,0.1572031671581935345696019386238421566056,0.1215185706879031846894148090724766259566,0.1215185706879031846894148090724766259566,0.0801580871597602098056332770628543095836,0.0801580871597602098056332770628543095836,0.0351194603317518630318328761381917806197,0.0351194603317518630318328761381917806197},
{0.2025782419255612728806201999675193148386,0.1984314853271115764561183264438393248186,0.1984314853271115764561183264438393248186,0.1861610000155622110268005618664228245062,0.1861610000155622110268005618664228245062,0.1662692058169939335532008604812088111309,0.1662692058169939335532008604812088111309,0.1395706779261543144478047945110283225208,0.1395706779261543144478047945110283225208,0.1071592204671719350118695466858693034155,0.1071592204671719350118695466858693034155,0.0703660474881081247092674164506673384667,0.0703660474881081247092674164506673384667,0.0307532419961172683546283935772044177217,0.0307532419961172683546283935772044177217},
{0.1894506104550684962853967232082831051469,0.1894506104550684962853967232082831051469,0.1826034150449235888667636679692199393835,0.1826034150449235888667636679692199393835,0.1691565193950025381893120790303599622116,0.1691565193950025381893120790303599622116,0.1495959888165767320815017305474785489704,0.1495959888165767320815017305474785489704,0.1246289712555338720524762821920164201448,0.1246289712555338720524762821920164201448,0.0951585116824927848099251076022462263552,0.0951585116824927848099251076022462263552,0.0622535239386478928628438369943776942749,0.0622535239386478928628438369943776942749,0.0271524594117540948517805724560181035122,0.0271524594117540948517805724560181035122},
{0.1794464703562065254582656442618856214487,0.1765627053669926463252709901131972391509,0.1765627053669926463252709901131972391509,0.1680041021564500445099706637883231550211,0.1680041021564500445099706637883231550211,0.1540457610768102880814315948019586119404,0.1540457610768102880814315948019586119404,0.1351363684685254732863199817023501973721,0.1351363684685254732863199817023501973721,0.1118838471934039710947883856263559267358,0.1118838471934039710947883856263559267358,0.0850361483171791808835353701910620738504,0.0850361483171791808835353701910620738504,0.0554595293739872011294401653582446605128,0.0554595293739872011294401653582446605128,0.0241483028685479319601100262875653246916,0.0241483028685479319601100262875653246916},
{0.1691423829631435918406564701349866103341,0.1691423829631435918406564701349866103341,0.1642764837458327229860537764659275904123,0.1642764837458327229860537764659275904123,0.1546846751262652449254180038363747721932,0.1546846751262652449254180038363747721932,0.1406429146706506512047313037519472280955,0.1406429146706506512047313037519472280955,0.1225552067114784601845191268002015552281,0.1225552067114784601845191268002015552281,0.1009420441062871655628139849248346070628,0.1009420441062871655628139849248346070628,0.0764257302548890565291296776166365256053,0.0764257302548890565291296776166365256053,0.0497145488949697964533349462026386416808,0.0497145488949697964533349462026386416808,0.0216160135264833103133427102664524693876,0.0216160135264833103133427102664524693876},
{0.1610544498487836959791636253209167350399,0.1589688433939543476499564394650472016787,0.1589688433939543476499564394650472016787,0.1527660420658596667788554008976629984610,0.1527660420658596667788554008976629984610,0.1426067021736066117757461094419029724756,0.1426067021736066117757461094419029724756,0.1287539625393362276755157848568771170558,0.1287539625393362276755157848568771170558,0.1115666455473339947160239016817659974813,0.1115666455473339947160239016817659974813,0.0914900216224499994644620941238396526609,0.0914900216224499994644620941238396526609,0.0690445427376412265807082580060130449618,0.0690445427376412265807082580060130449618,0.0448142267656996003328381574019942119517,0.0448142267656996003328381574019942119517,0.0194617882297264770363120414644384357529,0.0194617882297264770363120414644384357529},
{0.1527533871307258506980843319550975934919,0.1527533871307258506980843319550975934919,0.1491729864726037467878287370019694366926,0.1491729864726037467878287370019694366926,0.1420961093183820513292983250671649330345,0.1420961093183820513292983250671649330345,0.1316886384491766268984944997481631349161,0.1316886384491766268984944997481631349161,0.1181945319615184173123773777113822870050,0.1181945319615184173123773777113822870050,0.1019301198172404350367501354803498761666,0.1019301198172404350367501354803498761666,0.0832767415767047487247581432220462061001,0.0832767415767047487247581432220462061001,0.0626720483341090635695065351870416063516,0.0626720483341090635695065351870416063516,0.0406014298003869413310399522749321098790,0.0406014298003869413310399522749321098790,0.0176140071391521183118619623518528163621,0.0176140071391521183118619623518528163621},
{0.1460811336496904271919851476833711882448,0.1445244039899700590638271665537525436099,0.1445244039899700590638271665537525436099,0.1398873947910731547221334238675831108927,0.1398873947910731547221334238675831108927,0.1322689386333374617810525744967756043290,0.1322689386333374617810525744967756043290,0.1218314160537285341953671771257335983563,0.1218314160537285341953671771257335983563,0.1087972991671483776634745780701056420336,0.1087972991671483776634745780701056420336,0.0934444234560338615532897411139320884835,0.0934444234560338615532897411139320884835,0.0761001136283793020170516533001831792261,0.0761001136283793020170516533001831792261,0.0571344254268572082836358264724479574912,0.0571344254268572082836358264724479574912,0.0369537897708524937999506682993296661889,0.0369537897708524937999506682993296661889,0.0160172282577743333242246168584710152658,0.0160172282577743333242246168584710152658},
{0.1392518728556319933754102483418099578739,0.1392518728556319933754102483418099578739,0.1365414983460151713525738312315173965863,0.1365414983460151713525738312315173965863,0.1311735047870623707329649925303074458757,0.1311735047870623707329649925303074458757,0.1232523768105124242855609861548144719594,0.1232523768105124242855609861548144719594,0.1129322960805392183934006074217843191142,0.1129322960805392183934006074217843191142,0.1004141444428809649320788378305362823508,0.1004141444428809649320788378305362823508,0.0859416062170677274144436813727028661891,0.0859416062170677274144436813727028661891,0.0697964684245204880949614189302176573987,0.0697964684245204880949614189302176573987,0.0522933351526832859403120512732112561121,0.0522933351526832859403120512732112561121,0.0337749015848141547933022468659129013491,0.0337749015848141547933022468659129013491,0.0146279952982722006849910980471854451902,0.0146279952982722006849910980471854451902},
{0.1336545721861061753514571105458443385831,0.1324620394046966173716424647033169258050,0.1324620394046966173716424647033169258050,0.1289057221880821499785953393997936532597,0.1289057221880821499785953393997936532597,0.1230490843067295304675784006720096548158,0.1230490843067295304675784006720096548158,0.1149966402224113649416435129339613014914,0.1149966402224113649416435129339613014914,0.1048920914645414100740861850147438548584,0.1048920914645414100740861850147438548584,0.0929157660600351474770186173697646486034,0.0929157660600351474770186173697646486034,0.0792814117767189549228925247420432269137,0.0792814117767189549228925247420432269137,0.0642324214085258521271696151589109980391,0.0642324214085258521271696151589109980391,0.0480376717310846685716410716320339965612,0.0480376717310846685716410716320339965612,0.0309880058569794443106942196418845053837,0.0309880058569794443106942196418845053837,0.0134118594871417720813094934586150649766,0.0134118594871417720813094934586150649766},
{0.1279381953467521569740561652246953718517,0.1279381953467521569740561652246953718517,0.1258374563468282961213753825111836887264,0.1258374563468282961213753825111836887264,0.1216704729278033912044631534762624256070,0.1216704729278033912044631534762624256070,0.1155056680537256013533444839067835598622,0.1155056680537256013533444839067835598622,0.1074442701159656347825773424466062227946,0.1074442701159656347825773424466062227946,0.0976186521041138882698806644642471544279,0.0976186521041138882698806644642471544279,0.0861901615319532759171852029837426671850,0.0861901615319532759171852029837426671850,0.0733464814110803057340336152531165181193,0.0733464814110803057340336152531165181193,0.0592985849154367807463677585001085845412,0.0592985849154367807463677585001085845412,0.0442774388174198061686027482113382288593,0.0442774388174198061686027482113382288593,0.0285313886289336631813078159518782864491,0.0285313886289336631813078159518782864491,0.0123412297999871995468056670700372915759,0.0123412297999871995468056670700372915759}
};
// root finding precision cap
private float NRRF_PRECISION = 0.000001;
/**
* Do the curve's weights line up?
* (note: we assume 2 or more values)
*/
private boolean areLinear(float[] values) {
float dx = values[1]-values[0], rx;
for(int i=2; i<values.length; i++) {
rx = values[i]-values[i-1];
if(abs(dx-rx)>2) return false;
}
return true;
}
/**
* Root finding using the Newton-Raphson method
*/
float[] findAllRoots(int derivative, float[] values) {
float[] none = new float[0];
// Derivative will be a point function. No roots.
if(values.length-derivative <=1) {
return none;
}
// Derivative will be a linear function: compute root directly.
if(values.length-derivative == 2) {
while(values.length > 2) {
float[] _v = new float[values.length-1];
for(int k=0, n=_v.length; k<n; k++) {
_v[k] = n * (values[k+1] - values[k]);
}
values = _v;
}
if(values.length<2) {
return none;
}
float root = map(0,values[0],values[1],0,1);
if(root<0 || root>1) {
return none;
}
return new float[]{root};
}
ArrayList<Float> roots = new ArrayList<Float>();
float root;
for(float t=0; t<=1.0; t+= 0.01) {
try {
root = round(findRoots(derivative, t, values)/NRRF_PRECISION) * NRRF_PRECISION;
if(root<0 || root>1) continue;
if(abs(root-t)<=NRRF_PRECISION) continue;
if(roots.contains(root)) continue;
roots.add(root);
} catch (RuntimeException _e) {
// We don't actually care about this error,
// it simply indicates no satisfactory root
// could be found at this 't' value.
}
}
float[] ret = new float[roots.size()];
for(int i=0, l=ret.length; i<l; i++) {
ret[i] = roots.get(i);
}
return ret;
}
float findRoots(int derivative, float t, float[] values) { return findRoots(derivative, t, values, 0); }
float findRoots(int derivative, float t, float[] values, float offset) { return findRootsRecursive(derivative, t, values, offset, 0); }
/**
* Newton-Raphson root finding (with depth capping).
* Iteratively compute x(n+1) = x(n) - f(x)/f'(x),
* until (x(n+1) - x(n)) approaches zero with a
* satisfactory precision.
*/
float findRootsRecursive(int derivative, float t, float[] values, float offset, float depth) throws RuntimeException {
// root finding should work.
float f = getDerivative(derivative, t, values) - offset,
df = getDerivative(derivative+1, t, values),
t2 = t - (f/df);
// division by zero => treat f as unit tangent
if(df==0) { t2 = t - f; }
// once we hit the recursion cap, stop
if(depth > 12) {
if(abs(t-t2)<NRRF_PRECISION) { return int(t2/NRRF_PRECISION)*NRRF_PRECISION; }
throw new RuntimeException("Newton-Raphson ran past recursion depth");
}
// otherwise, recurse if we've not reached the desired precision yet
if (abs(t-t2)>NRRF_PRECISION) {
return findRootsRecursive(derivative, t2, values, offset, depth+1);
}
return t2;
}
// ========================================================
// GENERAL PURPOSE VECTOR ALGEBRA (in non-vector code...)
// ========================================================
/**
* line/line intersection function. Mostly boilerplate.
*/
private Point lli(Point[] pts) {
float x1=pts[0].x, y1=pts[0].y,
x2=pts[1].x, y2=pts[1].y,
x3=pts[2].x,y3=pts[2].y,
x4=pts[3].x,y4=pts[3].y,
nx=(x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4),
ny=(x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4),
d=(x1-x2)*(y3-y4)-(y1-y2)*(x3-x4);
if(d==0) { return null; }
return new Point(nx/d, ny/d);
}
/**
* Get the projection of X through Y onto the line
* that passes through A and B.
*/
Point getProjection(Point X, Point Y, Point A, Point B) {
return lli(new Point[]{X,Y,A,B});
}
/**
* Get the dot product between two line vectors
*/
float getDotProduct(Point p1, Point p2, Point p3, Point p4) {
float dx1 = p2.x - p1.x,
dy1 = p2.y - p1.y,
dx2 = p4.x - p3.x,
dy2 = p4.y - p3.y;
// and normalise the vectors
float l1 = sqrt(dx1*dx1 + dy1*dy1),
l2 = sqrt(dx2*dx2 + dy2*dy2);
if (l1==0 || l2==0) return 0;
dx1 /= l1; dy1 /= l1;
dx2 /= l2; dy2 /= l2;
return dx1*dx2 + dy1*dy2;
}
/**
* Get the "on the side"dness between a point and
* a line between s and e.
*/
float getSide(Point s, Point e, Point p) {
float dx1 = e.x - s.x,
dy1 = e.y - s.y,
dx2 = p.x - s.x,
dy2 = p.y - s.y;
// normalise the vectors
float l1 = sqrt(dx1*dx1 + dy1*dy1),
l2 = sqrt(dx2*dx2 + dy2*dy2);
if (l1==0 || l2==0) return 0;
dx1 /= l1; dy1 /= l1;
dx2 /= l2; dy2 /= l2;
// rotate a quarter turn
float a = PI/2, ca = cos(a), sa = sin(a),
nx1 = dx1*ca - dy1*sa,
ny1 = dx1*sa + dy1*ca;
return (nx1*dx2 + ny1*dy2 < 0 ? -1 : 1);
}
/**
* Perform intersection detection between two curves
*/
ArrayList<CurvePair> findIntersections(BezierCurve c1, BezierCurve c2) {
ArrayList<CurvePair> pairs = new ArrayList<CurvePair>();
ArrayList<CurvePair> finals = new ArrayList<CurvePair>();
pairs.add(new CurvePair(c1,c2));
refineIntersections(pairs, finals);
return finals;
}
/**
* iterative intersection refinement based on curve pairs.
*/
private void refineIntersections(ArrayList<CurvePair> pairs, ArrayList<CurvePair> finals) {
if(pairs.size()==0) { return; }
ArrayList<CurvePair> newPairs = new ArrayList<CurvePair>();
for(CurvePair cp: pairs) {
if(cp.hasOverlap()) {
if(cp.smallEnough()) {
finals.add(cp);
}
else {
CurvePair[] expanded = cp.splitAndCombine();
for(CurvePair ncp: expanded) {
newPairs.add(ncp);
}
}
}
}
pairs.clear();
for(CurvePair cp: newPairs) { pairs.add(cp); }
refineIntersections(pairs, finals);
}
}
// exception used in calculateABCRatio when there is no such ratio:
class NoRatioExistsException extends RuntimeException {
String msg;
NoRatioExistsException(int order) { msg = "Curve of order "+order+" has no fixed ABC ratio."; }
String toString() { return msg; }
}