-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_sup_per_scene.py
221 lines (173 loc) · 7.04 KB
/
train_sup_per_scene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import argparse
import yaml
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from libs.config import load_config
from libs.data import make_images
from libs.worker import SupRendererWorker
from libs.optimizer import *
from libs.utils import *
def main(args):
# set up checkpoint folder
os.makedirs('ckpt', exist_ok=True)
ckpt_path = os.path.join('ckpt', args.name)
ensure_path(ckpt_path)
# load config
try:
config_path = os.path.join(ckpt_path, 'config.yaml')
check_file(config_path)
config = load_config(config_path, mode='train_sup_per_scene')
print('config loaded from checkpoint folder')
config['_resume'] = True
except:
check_file(args.config)
config = load_config(args.config, mode='train_sup_per_scene')
print('config loaded from command line')
# configure GPUs
set_gpu(args.gpu)
n_gpus = torch.cuda.device_count()
set_log_path(ckpt_path)
writer = SummaryWriter(os.path.join(ckpt_path, 'tensorboard'))
rng = fix_random_seed(config.get('seed', 2022))
###########################################################################
""" worker """
itr0 = 0
n_itrs = config['opt']['n_itrs']
if config.get('_resume'):
ckpt_name = os.path.join(ckpt_path, 'last.pth')
try:
check_file(ckpt_name)
ckpt = torch.load(ckpt_name)
worker = SupRendererWorker(
cam_cfg=ckpt['config']['camera'],
model_cfg=ckpt['config']['model'],
)
worker.load(ckpt)
worker.cuda(n_gpus)
optimizer = load_optimizer(worker, ckpt)
scheduler = load_scheduler(optimizer, ckpt)
itr0, config = ckpt['itr'], ckpt['config']
except:
config.pop('_resume')
itr0 = 0
worker = SupRendererWorker(
cam_cfg=config['camera'],
model_cfg=config['model'],
)
worker.cuda(n_gpus)
optimizer = make_optimizer(worker, config['opt'])
scheduler = make_scheduler(optimizer, config['opt'])
else:
worker = SupRendererWorker(
cam_cfg=config['camera'],
model_cfg=config['model'],
)
worker.cuda(n_gpus)
optimizer = make_optimizer(worker, config['opt'])
scheduler = make_scheduler(optimizer, config['opt'])
yaml.dump(config, open(os.path.join(ckpt_path, 'config.yaml'), 'w'))
print('worker initialized, train from itr {:d}'.format(itr0 + 1))
print('number of model parameters: {:s}'.format(count_params(worker)))
############################################################################
""" dataset """
gt = make_images(config['target']) # (v, 1/3, h, w)
############################################################################
""" Training / Validation """
loss_list = ['mse', 'beta', 'tv']
train_losses = {k: AverageMeter() for k in loss_list}
metric_list = ['rmse', 'psnr', 'ssim']
timer = Timer()
for itr in range(itr0 + 1, n_itrs + 1):
loss_dict, _ = worker.train(
target=gt,
cfg=config['train'],
)
loss = config['opt']['mse'] * loss_dict['mse'] \
+ config['opt']['beta'] * loss_dict['beta'] \
+ config['opt']['tv'] * loss_dict['tv']
for k in loss_dict.keys():
train_losses[k].update(loss_dict[k].item())
writer.add_scalars(k, {'train': train_losses[k].item()}, itr)
optimizer.zero_grad()
loss.backward()
if config['opt']['clip_grad_norm'] > 0:
nn.utils.clip_grad_norm_(
worker.parameters(), config['opt']['clip_grad_norm']
)
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], itr)
optimizer.step()
scheduler.step()
if itr % args.print_freq == 0 or itr == 1:
torch.cuda.synchronize()
t_elapsed = time_str(timer.end())
log_str = '[{:03d}/{:03d}] '.format(
itr // args.print_freq, n_itrs // args.print_freq
)
for k in loss_list:
log_str += '{:s} {:.3f} | '.format(k, train_losses[k].item())
log_str += t_elapsed
log(log_str, 'log.txt')
writer.flush()
for k in loss_list:
train_losses[k].reset()
ckpt = worker.save()
ckpt['itr'] = itr
ckpt['config'] = config
ckpt['optimizer'] = optimizer.state_dict()
ckpt['scheduler'] = scheduler.state_dict()
torch.save(ckpt, os.path.join(ckpt_path, 'last.pth'))
timer.start()
if itr % args.val_freq == 0:
loss, output_dict, metric_dict = worker.eval(
target=gt,
cfg=config['eval'],
)
writer.add_scalars('mse', {'val': loss.item()}, itr)
for k in metric_dict.keys():
writer.add_scalars(k, {'val': metric_dict[k].item()}, itr)
pred = output_dict['pred']
target = output_dict['target']
pred = torch.clamp(pred, 0, 1)
target = torch.clamp(target, 0, 1)
img = torch.stack([pred, target], dim=1).flatten(0, 1)
if img.dim() == 3:
img = img.unsqueeze(1)
writer.add_images(
tag='val/{:03d}'.format(itr),
img_tensor=img,
global_step=itr,
)
t_elapsed = time_str(timer.end())
log_str = '[{:03d}/{:03d} val] '.format(
itr // args.print_freq, n_itrs // args.print_freq
)
log_str += 'loss: {:.3f} | '.format(loss.item())
for k in metric_list:
log_str += '{:s} {:.2f} | '.format(k, metric_dict[k].item())
log_str += t_elapsed
log(log_str, 'log.txt')
writer.flush()
ckpt = worker.save()
ckpt['itr'] = itr
ckpt['config'] = config
ckpt['optimizer'] = optimizer.state_dict()
ckpt['scheduler'] = scheduler.state_dict()
torch.save(ckpt, os.path.join(ckpt_path, '{:d}.pth'.format(itr)))
timer.start()
################################################################################
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', help='config file')
parser.add_argument('-n', '--name', help='job name')
parser.add_argument('-g', '--gpu', type=str, default='0',
help='GPU device IDs')
parser.add_argument('-pf', '--print_freq', type=int, default=1,
help='print frequency (x100 itrs)')
parser.add_argument('-vf', '--val_freq', type=int, default=1,
help='validation frequency (x100 itrs)')
args = parser.parse_args()
args.print_freq *= 100
args.val_freq *= 100
main(args)