forked from dfdazac/blp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrieval.py
308 lines (257 loc) · 11.5 KB
/
retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import os.path as osp
from collections import defaultdict
import torch
import torch.nn.functional as F
from tqdm import tqdm
from transformers import BertTokenizer
from logging import Logger
from sacred import Experiment
from sacred.observers import MongoObserver
from sacred.run import Run
import json
import pytrec_eval
import numpy as np
import scipy.stats
import nltk
from data import DROPPED
from data import GloVeTokenizer
import utils
OUT_PATH = 'output/'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ex = Experiment()
ex.logger = utils.get_logger()
# Set up database logs
uri = os.environ.get('DB_URI')
database = os.environ.get('DB_NAME')
if all([uri, database]):
ex.observers.append(MongoObserver(uri, database))
def remove_stopwords(text):
tokens = nltk.word_tokenize(text)
text = ' '.join([t for t in tokens if
t.lower() not in DROPPED])
return text
@ex.config
def config():
dim = 128
model = 'bert-dkrl'
rel_model = 'transe'
max_len = 64
emb_batch_size = 512
checkpoint = 'output/model-348.pt'
run_file = 'data/DBpedia-Entity/runs/v2/bm25f-ca_v2.run'
queries_file = 'data/DBpedia-Entity/collection/v2/queries-v2_stopped.txt'
descriptions_file = 'data/DBpedia-Entity/runs/v2/' \
'bm25f-ca_v2-descriptions.txt'
qrels_file = 'data/DBpedia-Entity/collection/v2/qrels-v2.txt'
folds_file = 'data/DBpedia-Entity/collection/v2/folds/all_queries.json'
@ex.capture
def embed_entities(dim, model, rel_model, max_len, emb_batch_size, checkpoint,
run_file, descriptions_file, drop_stopwords, _log: Logger):
def encode_batch(batch):
tokenized_data = tokenizer.batch_encode_plus(batch,
max_length=max_len,
pad_to_max_length=True,
return_token_type_ids=False,
return_tensors='pt')
tokens = tokenized_data['input_ids'].to(device)
masks = tokenized_data['attention_mask'].float().to(device)
return encoder.encode(tokens.to(device), masks.to(device))
if model.startswith('bert') or model == 'blp':
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
else:
tokenizer = GloVeTokenizer('data/glove/glove.6B.300d-maps.pt')
encoder = utils.get_model(model, dim, rel_model,
encoder_name='bert-base-cased',
loss_fn='margin', num_entities=0,
num_relations=1, regularizer=0.0).to(device)
encoder = torch.nn.DataParallel(encoder)
state_dict = torch.load(checkpoint, map_location=device)
# We don't need relation embeddings for this task
state_dict.pop('module.rel_emb.weight', None)
encoder.load_state_dict(state_dict, strict=False)
encoder = encoder.module
for param in encoder.parameters():
param.requires_grad = False
# Encode entity descriptions
run_file_name = osp.splitext(osp.basename(run_file))[0]
get_entity_embeddings = True
qent_checkpoint = osp.join(osp.dirname(checkpoint),
f'{run_file_name}-qent-{osp.basename(checkpoint)}')
if osp.exists(qent_checkpoint):
_log.info(f'Loading entity embeddings from {qent_checkpoint}')
ent_embeddings = torch.load(qent_checkpoint, map_location=device)
get_entity_embeddings = False
else:
ent_embeddings = []
entity2idx = dict()
descriptions_batch = []
progress = tqdm(desc='Encoding entity descriptions',
disable=not get_entity_embeddings)
with open(descriptions_file) as f:
for i, line in enumerate(f):
values = line.strip().split('\t')
entity = values[0]
entity2idx[entity] = i
if get_entity_embeddings:
text = ' '.join(values[1:])
if drop_stopwords:
text = remove_stopwords(text)
descriptions_batch.append(text)
if len(descriptions_batch) == emb_batch_size:
embedding = encode_batch(descriptions_batch)
ent_embeddings.append(embedding)
descriptions_batch = []
progress.update(emb_batch_size)
if get_entity_embeddings:
if len(descriptions_batch) > 0:
embedding = encode_batch(descriptions_batch)
ent_embeddings.append(embedding)
ent_embeddings = torch.cat(ent_embeddings)
torch.save(ent_embeddings, qent_checkpoint)
_log.info(f'Saved entity embeddings to {qent_checkpoint}')
progress.close()
return ent_embeddings, entity2idx, encoder, tokenizer
def rerank_on_fold(fold, qrels, baseline_run, id2query, tokenizer, encoder,
entity2idx, ent_embeddings, alpha, drop_stopwords):
train_run = dict()
qrel_run = dict()
for query_id in fold:
results = baseline_run[query_id]
# Encode query
query = id2query[query_id]
if drop_stopwords:
query = remove_stopwords(query)
query_tokens = tokenizer.encode(query, return_tensors='pt',
max_length=64)
query_embedding = encoder.encode(query_tokens.to(device),
text_mask=None)
# Get embeddings of entities to rerank for this query
ent_ids_to_rerank = []
original_scores = []
selected_results = []
missing_results = []
missing_scores = []
for entity, orig_score in results.items():
if entity in entity2idx:
ent_ids_to_rerank.append(entity2idx[entity])
original_scores.append(orig_score)
selected_results.append(entity)
else:
missing_results.append(entity)
missing_scores.append(orig_score)
candidate_embeddings = ent_embeddings[ent_ids_to_rerank]
candidate_embeddings = F.normalize(candidate_embeddings, dim=-1)
query_embedding = F.normalize(query_embedding, dim=-1)
# Compute relevance
scores = candidate_embeddings @ query_embedding.t()
scores = scores.flatten().cpu().tolist() + [0] * len(missing_scores)
results_scores = zip(selected_results + missing_results,
scores,
original_scores + missing_scores)
results_scores = [[result, alpha * s1 + (1 - alpha) * s2] for
result, s1, s2 in results_scores]
train_run[query_id] = {r: s for r, s in results_scores}
qrel_run[query_id] = qrels[query_id]
evaluator = pytrec_eval.RelevanceEvaluator(qrel_run, {'ndcg_cut_100'})
train_results = evaluator.evaluate(train_run)
mean = np.mean([res['ndcg_cut_100'] for res in train_results.values()])
return mean, train_run
@ex.automain
def rerank(model, rel_model, run_file, queries_file, qrels_file, folds_file,
_run: Run, _log: Logger):
drop_stopwords = model in {'bert-bow', 'bert-dkrl',
'glove-bow', 'glove-dkrl'}
ent_embeddings, entity2idx, encoder, tokenizer = embed_entities(
drop_stopwords=drop_stopwords)
# Read queries
id2query = dict()
with open(queries_file) as f:
for line in f:
values = line.strip().split('\t')
query_id = values[0]
query = ' '.join(values[1:])
id2query[query_id] = query
# Read baseline and ground truth rankings
baseline_run = defaultdict(dict)
qrels = defaultdict(dict)
for query_dict, file in ((baseline_run, run_file),
(qrels, qrels_file)):
with open(file) as f:
for line in f:
values = line.strip().split()
if len(values) >= 6:
query_id, q0, entity, rank, score, *_ = values
score = float(score)
else:
query_id, q0, entity, score = values
score = int(score)
query_dict[query_id][entity] = score
# Read query folds
with open(folds_file) as f:
folds = json.load(f)
# Keep only query type of interest
new_baseline_run = {}
new_qrels = {}
for f in folds.values():
relevant_queries = f['testing']
for query_id in relevant_queries:
new_baseline_run.update({query_id: baseline_run[query_id]})
new_qrels.update({query_id: qrels[query_id]})
baseline_run = new_baseline_run
qrels = new_qrels
# Choose best reranking on training set
alpha_choices = np.linspace(0, 1, 20)
test_run = dict()
for i, (idx, fold) in enumerate(folds.items()):
train_queries = fold['training']
best_result = 0.0
best_alpha = alpha_choices[0]
for alpha in alpha_choices:
result, _ = rerank_on_fold(train_queries, qrels,
baseline_run, id2query, tokenizer,
encoder, entity2idx, ent_embeddings,
alpha, drop_stopwords)
if result > best_result:
best_result = result
best_alpha = alpha
_log.info(f'[Fold {i + 1}/{len(folds)}]'
f' Best training result: {best_result:.3f}'
f' with alpha={best_alpha:.3}')
test_queries = fold['testing']
fold_mean, fold_run = rerank_on_fold(test_queries, qrels,
baseline_run, id2query,
tokenizer, encoder, entity2idx,
ent_embeddings, best_alpha,
drop_stopwords)
_log.info(f'Test fold result: {fold_mean:.3f}')
test_run.update(fold_run)
_log.info(f'Finished hyperparameter search')
_log.info(f'Saving run file')
output_run_path = osp.join(OUT_PATH, f'{_run._id}.run')
with open(output_run_path, 'w') as f:
for query, results in test_run.items():
ranking = sorted(results.items(), key=lambda x: x[1], reverse=True)
for i, (entity, score) in enumerate(ranking):
f.write(
f'{query} Q0 {entity} {i + 1} {score} {model}-{rel_model}\n')
metrics = {'ndcg_cut_10', 'ndcg_cut_100'}
evaluator = pytrec_eval.RelevanceEvaluator(qrels, metrics)
baseline_results = evaluator.evaluate(baseline_run)
# This shouldn't be necessary, but there seems to be a bug that requires
# to instantiate the evaluator again, otherwise only one metric is obtained
# See https://github.com/cvangysel/pytrec_eval/issues/22
evaluator = pytrec_eval.RelevanceEvaluator(qrels, metrics)
test_results = evaluator.evaluate(test_run)
for metric in metrics:
baseline_mean = np.mean(
[res[metric] for res in baseline_results.values()])
test_mean = np.mean([res[metric] for res in test_results.values()])
_log.info(f'Metric: {metric}')
_log.info(f'Baseline result: {baseline_mean:.3f}')
_log.info(f'Test result: {test_mean:.3f}')
first_scores = [baseline_results[query_id][metric] for query_id in
baseline_results]
second_scores = [test_results[query_id][metric] for query_id in
baseline_results]
_log.info(scipy.stats.ttest_rel(first_scores, second_scores))