forked from facebookresearch/Detectron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_engine.py
330 lines (291 loc) · 12.4 KB
/
test_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Test a Detectron network on an imdb (image database)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from collections import defaultdict
import cv2
import datetime
import logging
import numpy as np
import os
import yaml
from caffe2.python import workspace
from core.config import cfg
from core.rpn_generator import generate_rpn_on_dataset
from core.rpn_generator import generate_rpn_on_range
from core.test import im_detect_all
from datasets import task_evaluation
from datasets.json_dataset import JsonDataset
from modeling import model_builder
from utils.io import save_object
from utils.timer import Timer
import utils.c2 as c2_utils
import utils.env as envu
import utils.net as net_utils
import utils.subprocess as subprocess_utils
import utils.vis as vis_utils
logger = logging.getLogger(__name__)
def get_eval_functions():
# Determine which parent or child function should handle inference
if cfg.MODEL.RPN_ONLY:
child_func = generate_rpn_on_range
parent_func = generate_rpn_on_dataset
else:
# Generic case that handles all network types other than RPN-only nets
# and RetinaNet
child_func = test_net
parent_func = test_net_on_dataset
return parent_func, child_func
def run_inference(output_dir, ind_range=None, multi_gpu_testing=False, gpu_id=0):
parent_func, child_func = get_eval_functions()
is_parent = ind_range is None
if is_parent:
# Parent case:
# In this case we're either running inference on the entire dataset in a
# single process or (if multi_gpu_testing is True) using this process to
# launch subprocesses that each run inference on a range of the dataset
if len(cfg.TEST.DATASETS) == 0:
cfg.TEST.DATASETS = (cfg.TEST.DATASET, )
cfg.TEST.PROPOSAL_FILES = (cfg.TEST.PROPOSAL_FILE, )
all_results = {}
for i in range(len(cfg.TEST.DATASETS)):
cfg.TEST.DATASET = cfg.TEST.DATASETS[i]
if cfg.TEST.PRECOMPUTED_PROPOSALS:
cfg.TEST.PROPOSAL_FILE = cfg.TEST.PROPOSAL_FILES[i]
results = parent_func(output_dir, multi_gpu=multi_gpu_testing)
all_results.update(results)
return all_results
else:
# Subprocess child case:
# In this case test_net was called via subprocess.Popen to execute on a
# range of inputs on a single dataset (i.e., use cfg.TEST.DATASET and
# don't loop over cfg.TEST.DATASETS)
return child_func(output_dir, ind_range=ind_range, gpu_id=gpu_id)
def test_net_on_dataset(output_dir, multi_gpu=False, gpu_id=0):
"""Run inference on a dataset."""
dataset = JsonDataset(cfg.TEST.DATASET)
test_timer = Timer()
test_timer.tic()
if multi_gpu:
num_images = len(dataset.get_roidb())
all_boxes, all_segms, all_keyps = multi_gpu_test_net_on_dataset(
num_images, output_dir
)
else:
all_boxes, all_segms, all_keyps = test_net(output_dir, gpu_id=gpu_id)
test_timer.toc()
logger.info('Total inference time: {:.3f}s'.format(test_timer.average_time))
results = task_evaluation.evaluate_all(
dataset, all_boxes, all_segms, all_keyps, output_dir
)
return results
def multi_gpu_test_net_on_dataset(num_images, output_dir):
"""Multi-gpu inference on a dataset."""
binary_dir = envu.get_runtime_dir()
binary_ext = envu.get_py_bin_ext()
binary = os.path.join(binary_dir, 'test_net' + binary_ext)
assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)
# Run inference in parallel in subprocesses
# Outputs will be a list of outputs from each subprocess, where the output
# of each subprocess is the dictionary saved by test_net().
outputs = subprocess_utils.process_in_parallel(
'detection', num_images, binary, output_dir
)
# Collate the results from each subprocess
all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
for det_data in outputs:
all_boxes_batch = det_data['all_boxes']
all_segms_batch = det_data['all_segms']
all_keyps_batch = det_data['all_keyps']
for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
all_boxes[cls_idx] += all_boxes_batch[cls_idx]
all_segms[cls_idx] += all_segms_batch[cls_idx]
all_keyps[cls_idx] += all_keyps_batch[cls_idx]
det_file = os.path.join(output_dir, 'detections.pkl')
cfg_yaml = yaml.dump(cfg)
save_object(
dict(
all_boxes=all_boxes,
all_segms=all_segms,
all_keyps=all_keyps,
cfg=cfg_yaml
), det_file
)
logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
return all_boxes, all_segms, all_keyps
def test_net(output_dir, ind_range=None, gpu_id=0):
"""Run inference on all images in a dataset or over an index range of images
in a dataset using a single GPU.
"""
assert cfg.TEST.WEIGHTS != '', \
'TEST.WEIGHTS must be set to the model file to test'
assert not cfg.MODEL.RPN_ONLY, \
'Use rpn_generate to generate proposals from RPN-only models'
assert cfg.TEST.DATASET != '', \
'TEST.DATASET must be set to the dataset name to test'
roidb, dataset, start_ind, end_ind, total_num_images = get_roidb_and_dataset(
ind_range
)
model = initialize_model_from_cfg(gpu_id=gpu_id)
num_images = len(roidb)
num_classes = cfg.MODEL.NUM_CLASSES
all_boxes, all_segms, all_keyps = empty_results(num_classes, num_images)
timers = defaultdict(Timer)
for i, entry in enumerate(roidb):
if cfg.TEST.PRECOMPUTED_PROPOSALS:
# The roidb may contain ground-truth rois (for example, if the roidb
# comes from the training or val split). We only want to evaluate
# detection on the *non*-ground-truth rois. We select only the rois
# that have the gt_classes field set to 0, which means there's no
# ground truth.
box_proposals = entry['boxes'][entry['gt_classes'] == 0]
if len(box_proposals) == 0:
continue
else:
# Faster R-CNN type models generate proposals on-the-fly with an
# in-network RPN; 1-stage models don't require proposals.
box_proposals = None
im = cv2.imread(entry['image'])
with c2_utils.NamedCudaScope(gpu_id):
cls_boxes_i, cls_segms_i, cls_keyps_i = im_detect_all(
model, im, box_proposals, timers
)
extend_results(i, all_boxes, cls_boxes_i)
if cls_segms_i is not None:
extend_results(i, all_segms, cls_segms_i)
if cls_keyps_i is not None:
extend_results(i, all_keyps, cls_keyps_i)
if i % 10 == 0: # Reduce log file size
ave_total_time = np.sum([t.average_time for t in timers.values()])
eta_seconds = ave_total_time * (num_images - i - 1)
eta = str(datetime.timedelta(seconds=int(eta_seconds)))
det_time = (
timers['im_detect_bbox'].average_time +
timers['im_detect_mask'].average_time +
timers['im_detect_keypoints'].average_time
)
misc_time = (
timers['misc_bbox'].average_time +
timers['misc_mask'].average_time +
timers['misc_keypoints'].average_time
)
logger.info(
(
'im_detect: range [{:d}, {:d}] of {:d}: '
'{:d}/{:d} {:.3f}s + {:.3f}s (eta: {})'
).format(
start_ind + 1, end_ind, total_num_images, start_ind + i + 1,
start_ind + num_images, det_time, misc_time, eta
)
)
if cfg.VIS:
im_name = os.path.splitext(os.path.basename(entry['image']))[0]
vis_utils.vis_one_image(
im[:, :, ::-1],
'{:d}_{:s}'.format(i, im_name),
os.path.join(output_dir, 'vis'),
cls_boxes_i,
segms=cls_segms_i,
keypoints=cls_keyps_i,
thresh=cfg.VIS_TH,
box_alpha=0.8,
dataset=dataset,
show_class=True
)
cfg_yaml = yaml.dump(cfg)
if ind_range is not None:
det_name = 'detection_range_%s_%s.pkl' % tuple(ind_range)
else:
det_name = 'detections.pkl'
det_file = os.path.join(output_dir, det_name)
save_object(
dict(
all_boxes=all_boxes,
all_segms=all_segms,
all_keyps=all_keyps,
cfg=cfg_yaml
), det_file
)
logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
return all_boxes, all_segms, all_keyps
def initialize_model_from_cfg(gpu_id=0):
"""Initialize a model from the global cfg. Loads test-time weights and
creates the networks in the Caffe2 workspace.
"""
model = model_builder.create(cfg.MODEL.TYPE, train=False, gpu_id=gpu_id)
net_utils.initialize_gpu_from_weights_file(
model, cfg.TEST.WEIGHTS, gpu_id=gpu_id,
)
model_builder.add_inference_inputs(model)
workspace.CreateNet(model.net)
workspace.CreateNet(model.conv_body_net)
if cfg.MODEL.MASK_ON:
workspace.CreateNet(model.mask_net)
if cfg.MODEL.KEYPOINTS_ON:
workspace.CreateNet(model.keypoint_net)
return model
def get_roidb_and_dataset(ind_range):
"""Get the roidb for the dataset specified in the global cfg. Optionally
restrict it to a range of indices if ind_range is a pair of integers.
"""
dataset = JsonDataset(cfg.TEST.DATASET)
if cfg.TEST.PRECOMPUTED_PROPOSALS:
roidb = dataset.get_roidb(
proposal_file=cfg.TEST.PROPOSAL_FILE,
proposal_limit=cfg.TEST.PROPOSAL_LIMIT
)
else:
roidb = dataset.get_roidb()
if ind_range is not None:
total_num_images = len(roidb)
start, end = ind_range
roidb = roidb[start:end]
else:
start = 0
end = len(roidb)
total_num_images = end
return roidb, dataset, start, end, total_num_images
def empty_results(num_classes, num_images):
"""Return empty results lists for boxes, masks, and keypoints.
Box detections are collected into:
all_boxes[cls][image] = N x 5 array with columns (x1, y1, x2, y2, score)
Instance mask predictions are collected into:
all_segms[cls][image] = [...] list of COCO RLE encoded masks that are in
1:1 correspondence with the boxes in all_boxes[cls][image]
Keypoint predictions are collected into:
all_keyps[cls][image] = [...] list of keypoints results, each encoded as
a 3D array (#rois, 4, #keypoints) with the 4 rows corresponding to
[x, y, logit, prob] (See: utils.keypoints.heatmaps_to_keypoints).
Keypoints are recorded for person (cls = 1); they are in 1:1
correspondence with the boxes in all_boxes[cls][image].
"""
# Note: do not be tempted to use [[] * N], which gives N references to the
# *same* empty list.
all_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)]
all_segms = [[[] for _ in range(num_images)] for _ in range(num_classes)]
all_keyps = [[[] for _ in range(num_images)] for _ in range(num_classes)]
return all_boxes, all_segms, all_keyps
def extend_results(index, all_res, im_res):
"""Add results for an image to the set of all results at the specified
index.
"""
# Skip cls_idx 0 (__background__)
for cls_idx in range(1, len(im_res)):
all_res[cls_idx][index] = im_res[cls_idx]