-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython.html
407 lines (285 loc) · 16 KB
/
python.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="/mysite.css">
</head>
<body>
<!-- Menu Bar -->
<div class="topnav">
<a href="/index.html">Home</a>
<a href="/projects.html">Projects</a>
<a href="/resources.html">Resources</a>
<a href="/about.html">About</a>
</div>
<h1>Python</h1>
<h2>Libraries & Defaults</h2>
import <span style="background-color:yellow;">numpy</span> as np <br><br>
import <span style="background-color:yellow;">pandas</span> as pd <br><br>
import <span style="background-color:yellow;">seaborn</span> as sns; <br>
sns.set(); <br>
sns.set_style("whitegrid"); <br><br>
# to display all the columns of the dataframe in the notebook <br>
pd.pandas.set_option(<span style="background-color:yellow;">'display.max_columns'</span>, None) <br><br>
# Show a chart created using matplotlib directly under the code that produces it <br>
%<span style="background-color:yellow;">matplotlib</span> inline <br><br>
# Import pyplot from the matplotlib library, for creating chart <br>
from matplotlib import <span style="background-color:yellow;">pyplot</span> as plt <br><br>
# Configure the aesthetics of the charts <br>
plt.rcParams['figure.<span style="background-color:yellow;">figsize</span>'] = (10, 8) <br><br>
<h2>Import Data</h2>
df = pd.<span style="background-color:yellow;">read_csv</span>('my_file.csv') <br>
<h2>Initial Look at Data</h2>
<span style="background-color:yellow;">len</span>(df)
<br><br>
df.<span style="background-color:yellow;">shape</span>()
<br><br>
df.<span style="background-color:yellow;">columns</span>
<br><br>
df.<span style="background-color:yellow;">dtypes</span>
<br><br>
df.<span style="background-color:yellow;">head</span>()
<br><br>
df.<span style="background-color:yellow;">tail</span>()
<br><br>
df['col'].<span style="background-color:yellow;">unique</span>()
<br><br>
df.<span style="background-color:yellow;">sample</span>()
<br><br>
df.<span style="background-color:yellow;">describe</span>(include='all')
<br><br>
df['col'].<span style="background-color:yellow;">describe</span>()
<br><br>
df.<span style="background-color:yellow;">info</span>() <br><br>
# make a list of the variables that contain <span style="background-color:yellow;">missing values</span> <br>
vars_with_na = [var for var in df.columns if df[var].isnull().sum()>1] <br><br>
# print the variable name and the percentage of missing values <br>
for var in vars_with_na: <br>
print(var, np.round(df[var].isnull().mean(), 3), ' % missing values') <br><br>
def analyse_na_value(df, var): <br>
df = df.copy() <br><br>
# let's make a variable that indicates 1 if the observation was missing or zero otherwise <br>
df[var] = np.where(df[var].isnull(), 1, 0) <br><br>
# let's calculate the median SalePrice (our target feature) where the information is missing or present <br>
df.groupby(var)['SalePrice'].median().plot.bar() <br>
plt.title(var) <br>
plt.show() <br><br>
for var in vars_with_na: <br>
analyse_na_value(data, var) <br><br>
# get a list of variables that are <span style="background-color:yellow;">numerical</span> <br>
num_vars = [var for var in data.columns if data[var].dtypes != 'O'] <br><br>
print('Number of numerical variables: ', len(num_vars)) <br><br>
# view the data for the first few rows for the numerical variables <br>
data[num_vars].head() <br><br>
### <span style="background-color:yellow;">Categorical</span> variables <br>
cat_vars = [var for var in data.columns if data[var].dtypes=='O'] <br>
print('Number of categorical variables: ', len(cat_vars)) <br><br>
# how many category values per category feature? <br>
for var in cat_vars: <br>
print(var, len(data[var].unique()), ' categories') <br><br>
# Find category values that make up less than 1% of the observations i.e. <span style="background-color:yellow;">Rare Labels</span> <br>
# Labels that are under-represented in the dataset tend to cause over-fitting of machine learning models. <br>
# That is why we want to remove them. <br>
def analyse_rare_labels(df, var, rare_perc): <br>
df = df.copy() <br>
tmp = df.groupby(var)['SalePrice'].count() / len(df) <br>
return tmp[tmp < rare_perc] <br><br>
for var in cat_vars: <br>
print(analyse_rare_labels(data, var, 0.01)) <br>
print() <br><br>
<h2>Clean and Transform Data</h2>
df2 = df1.<span style="background-color:yellow;">copy</span>()
<br><br>
df.<span style="background-color:yellow;">T</span>
<br><br>
df['col'].<span style="background-color:yellow;">astype</span>('category')
<br><br>
df.<span style="background-color:yellow;">rename</span>( columns = {'old_name1':'new_name1', 'old_name2':'new_name2'}, inplace=True )
<br><br>
df['col'].<span style="background-color:yellow;">map</span>( {1: 'Diabetic', 0:'Non-Diabetic'} )
<br><br>
pd.<span style="background-color:yellow;">cut</span>( df['col'], <br>
bins=[0, 3, 5,...], <br>
labels=['low', 'med', 'high', ...], <br>
right=False, <br>
include_lowest=True <br>
)
<br><br>
df = df.<span style="background-color:yellow;">drop</span>(columns=['col1', 'col2'])
<br><br>
df = df.<span style="background-color:yellow;">drop</span>( [0, 1] ) <-- drop rows with index 0 and index 1
<br><br>
df.<span style="background-color:yellow;">dropna</span>() <-- drop rows with any cells containing NaN
<br><br>
df.<span style="background-color:yellow;">fillna</span>(' ')
<br><br>
df.<span style="background-color:yellow;">sort_values</span>(by='col', ascending=False)
<br><br>
df.<span style="background-color:yellow;">sort_index</span>(ascending=False) <-- useful for sorting a series.
<br><br>
df.<span style="background-color:yellow;">loc</span>[ (df['col1']=='value1') & (df['col2']<='value2'), ['col1', 'col2', 'col3']]
<br><br>
totals = df.loc[ <br>
'Ancoats':'Woodhouse', <br>
'Searching for Work':'Preparing for work' <br>
].<span style="background-color:yellow;">sum</span>(axis='rows') <-- create totals for a range of columns
<br><br>
df.<span style="background-color:yellow;">iloc</span>[[0,1], 9:15]
<br><br>
df['col'].<span style="background-color:yellow;">value_counts</span>(normalize=True) <-- normalize=True gives proportions rather than integer counts
<br><br>
.<span style="background-color:yellow;">isnull</span>()
<br><br>
.<span style="background-color:yellow;">notnull</span>()
<br><br>
.<span style="background-color:yellow;">isin</span>( ['value1', 'value2'] )
<br><br>
<span style="background-color:yellow;">~</span> <-- reverses the boolean logic test of what comes after this (like 'NOT')
<br><br>
.<span style="background-color:yellow;">between</span>(20, 35)
<br><br>
.str.<span style="background-color:yellow;">contains</span>('blah')
<br><br>
.str.<span style="background-color:yellow;">startswith</span>('blah')
<br><br>
.str.<span style="background-color:yellow;">endswith</span>('blah')
<br><br>
.<span style="background-color:yellow;">sum</span>()
<br><br>
.<span style="background-color:yellow;">count</span>()
<br><br>
.<span style="background-color:yellow;">mean</span>()
<br><br>
.<span style="background-color:yellow;">median</span>()
<br><br>
.<span style="background-color:yellow;">min</span>()
<br><br>
.<span style="background-color:yellow;">max</span>()
<br><br>
.<span style="background-color:yellow;">quantile</span>( [0.25, 0.75] )
<br><br>
.<span style="background-color:yellow;">std</span>()
<br><br>
.<span style="background-color:yellow;">var</span>()
<br><br>
.<span style="background-color:yellow;">abs</span>()
<br><br>
.<span style="background-color:yellow;">groupby</span>('col').<span style="background-color:yellow;">size</span>()
<br><br>
.<span style="background-color:yellow;">groupby</span>('col').<span style="background-color:yellow;">mean</span>()
<br><br>
pd.<span style="background-color:yellow;">merge</span>(df1, df2, how='outer')
<br><br>
df1.<span style="background-color:yellow;">columns</span> <span style="background-color:yellow;">&</span> df2.<span style="background-color:yellow;">columns</span> <-- find columns in common
<br><br>
df1.<span style="background-color:yellow;">merge</span>(df2, <span style="background-color:yellow;">on</span>='col')
<br><br>
df1.<span style="background-color:yellow;">merge</span>(df2, <span style="background-color:yellow;">left_on</span>='col1', <span style="background-color:yellow;">right_on</span>='col2')
<br><br>
df1.<span style="background-color:yellow;">merge</span>(df2, left_on='col1', <span style="background-color:yellow;">right_index=True</span>)
<br><br>
df1\ <br>
.merge(df2, on='col')\ <br>
.merge(df3, on='col2')\ <br>
.merge(df4.<span style="background-color:yellow;">query</span>(' col3 == "value1" '), on='col4' )\ <br>
.sort_values('col5')\ <br>
.tail(10)\ <br>
[['colX', 'colY', 'colZ']] <br><br>
# function to <span style="background-color:yellow;">replace missing values with 'Missing' in categorical variables</span> <br>
def fill_categorical_na(df, var_list): <br>
X = df.copy() <br>
X[var_list] = df[var_list].fillna('Missing') <br>
return X <br><br>
# replace missing values with new label: "Missing" <br>
X_train = fill_categorical_na(X_train, vars_with_na) <br>
X_test = fill_categorical_na(X_test, vars_with_na) <br><br>
# check that we have no missing information in the engineered variables <br>
X_train[vars_with_na].isnull().sum() <br><br>
# check that test set does not contain null values in the engineered variables <br>
[vr for var in vars_with_na if X_train[var].isnull().sum()>0] <br><br>
# For <span style="background-color:yellow;">numerical variables with missing values</span>, add an additional variable capturing the missing information, <br>
# and then replace the missing information in the original variable by the mode, or most frequent value: <br>
# Make a list of the numerical variables that contain missing values <br>
vars_with_na = [var for var in data.columns if X_train[var].isnull().sum()>1 and X_train[var].dtypes!='O'] <br><br>
# print the variable name and the percentage of missing values <br>
for var in vars_with_na: <br>
print(var, np.round(X_train[var].isnull().mean(), 3), ' % missing values') <br><br>
# replace the missing values <br>
for var in vars_with_na: <br>
# calculate the mode <br>
mode_val = X_train[var].mode()[0] <br><br>
# train <br>
X_train[var+'_na'] = np.where(X_train[var].isnull(), 1, 0) <br>
X_train[var].fillna(mode_val, inplace=True) <br><br>
# test <br>
X_test[var+'_na'] = np.where(X_test[var].isnull(), 1, 0) <br>
X_test[var].fillna(mode_val, inplace=True) <br><br>
# check that we have no more missing values in the engineered variables <br>
X_train[vars_with_na].isnull().sum() <br><br>
# <span style="background-color:yellow;">log transform the numerical variables that do not contain zeros in order to get a more Gaussian-like distribution.</span> <br>
# This tends to help Linear machine learning models. <br>
for var in ['LotFrontage', 'LotArea', '1stFlrSF', 'GrLivArea', 'SalePrice']: <br>
X_train[var] = np.log(X_train[var]) <br>
X_test[var]= np.log(X_test[var]) <br><br>
# check that test set does not contain null values in the engineered variables <br>
[var for var in ['LotFrontage', 'LotArea', '1stFlrSF', 'GrLivArea', 'SalePrice'] if X_test[var].isnull().sum()>0] <br><br>
# same for train set <br>
[var for var in ['LotFrontage', 'LotArea', '1stFlrSF', 'GrLivArea', 'SalePrice'] if X_train[var].isnull().sum()>0] <br><br>
# <span style="background-color:yellow;">deal with categories in variables that are present in less than 1% of the observations:</span> <br>
# capture the categorical variables first <br>
cat_vars = [var for var in X_train.columns if X_train[var].dtype == 'O'] <br><br>
def find_frequent_labels(df, var, rare_perc): <br>
# finds the labels that are shared by more than a certain % of the houses in the dataset <br>
df = df.copy() <br>
tmp = df.groupby(var)['SalePrice'].count() / len(df) <br>
return tmp[tmp>rare_perc].index <br><br>
# if the label is frequent then leave it alone, otherwise assign it to a new label called 'Rare' <br>
# this also will deal with any new data values that come along in production that are rare <br>
for var in cat_vars: <br>
frequent_ls = find_frequent_labels(X_train, var, 0.01) <br>
X_train[var] = np.where(X_train[var].isin(frequent_ls), X_train[var], 'Rare') <br>
X_test[var] = np.where(X_test[var].isin(frequent_ls), X_test[var], 'Rare') <br><br>
<h2>Visualise Data</h2>
df['col'].value_counts()<span style="background-color:yellow;">.plot.barh</span>()
<br><br>
df['col'].value_counts().plot.barh(color='#deaa02', alpha=0.8, width=0.9); <br>
plt.xlabel('Number of UK Python Users'); <br>
plt.rcParams['xtick.labelsize']=14 <br>
plt.rcParams['ytick.labelsize']=12 <br>
plt.rcParams['axes.labelsize'] = 18 <br>
plt.rcParams['axes.grid'] = False <br>
plt.rcParams['axes.titlesize'] = 14 <br>
plt.rcParams['ytick.major.pad']= 4 <br>
plt.rcParams['xtick.major.pad']= 4 <br>
plt.rcParams['axes.titlepad'] = 10 <br>
plt.rcParams['axes.labelpad'] = 10 <br>
<br><br>
df.<span style="background-color:yellow;">groupby</span>( ['col1', 'col2'] )['col3']\<br>
.<span style="background-color:yellow;">mean</span>()\<br>
.<span style="background-color:yellow;">unstack</span>('col2')\<br>
.loc[:, col2val1:col2val2]\<br>
.plot.bar()
<br><br>
.plot.<span style="background-color:yellow;">scatter</span>(x='', y='')
<br><br>
df['col'].plot.<span style="background-color:yellow;">box</span>()
<br><br>
df['col'].plot.<span style="background-color:yellow;">hist</span>()
<br><br>
df['col'].plot.<span style="background-color:yellow;">kde</span>()
<br><br>
sns.<span style="background-color:yellow;">distplot</span>(df['col']);
<br><br>
sns.<span style="background-color:yellow;">boxplot</span>(df['col']);
<br><br>
<!--
<h2>Publishing Jupyter Notebook HTML</h2>
When publishing my findings from data analysis, I don't always want to include the code, or at least hide it by default and provide the option to view it, so that it meets the needs of both technical and non-technical readers.
<br><br>
Below are useful code snippets to use within Jupyter Notebook NBConvert cells to provide a show/hide code button and hide the code by default. It also hides cell numbers and other edit-mode elements that I don't want to be displayed when publishing my findings.
<br><br>
<h3>Top Cell (JavaScript)</h3>
<h3>Bottom Cell (JavaScript)</h3>
-->
<br><br>
</body>
</html>