forked from Akkudoktor-EOS/EOS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_class_optimize.py
80 lines (65 loc) · 2.52 KB
/
test_class_optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import json
from pathlib import Path
from typing import Any
from unittest.mock import patch
import pytest
from akkudoktoreos.class_optimize import (
OptimizationParameters,
OptimizeResponse,
optimization_problem,
)
from akkudoktoreos.config import AppConfig
DIR_TESTDATA = Path(__file__).parent / "testdata"
def compare_dict(actual: dict[str, Any], expected: dict[str, Any]):
assert set(actual) == set(expected)
for key, value in expected.items():
if isinstance(value, dict):
assert isinstance(actual[key], dict)
compare_dict(actual[key], value)
elif isinstance(value, list):
assert isinstance(actual[key], list)
assert actual[key] == pytest.approx(value)
else:
assert actual[key] == pytest.approx(value)
@pytest.mark.parametrize(
"fn_in, fn_out, ngen",
[
("optimize_input_1.json", "optimize_result_1.json", 3),
("optimize_input_2.json", "optimize_result_2.json", 3),
("optimize_input_2.json", "optimize_result_2_full.json", 400),
],
)
@patch("akkudoktoreos.class_optimize.visualisiere_ergebnisse")
def test_optimize(
visualisiere_ergebnisse_patch,
fn_in: str,
fn_out: str,
ngen: int,
is_full_run: bool,
tmp_config: AppConfig,
):
"""Test optimierung_ems."""
# Load input and output data
file = DIR_TESTDATA / fn_in
with file.open("r") as f_in:
input_data = OptimizationParameters(**json.load(f_in))
file = DIR_TESTDATA / fn_out
with file.open("r") as f_out:
expected_output_data = json.load(f_out)
opt_class = optimization_problem(tmp_config, fixed_seed=42)
start_hour = 10
if ngen > 10 and not is_full_run:
pytest.skip()
# Call the optimization function
ergebnis = opt_class.optimierung_ems(parameters=input_data, start_hour=start_hour, ngen=ngen)
# with open(f"new_{fn_out}", "w") as f_out:
# from akkudoktoreos.class_numpy_encoder import NumpyEncoder
# json_data_str = NumpyEncoder.dumps(ergebnis)
# json.dump(json.loads(json_data_str), f_out, indent=4)
# Assert that the output contains all expected entries.
# This does not assert that the optimization always gives the same result!
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
compare_dict(ergebnis, expected_output_data)
# The function creates a visualization result PDF as a side-effect.
visualisiere_ergebnisse_patch.assert_called_once()
OptimizeResponse(**ergebnis)