forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
abituguru.c
1637 lines (1486 loc) · 51.9 KB
/
abituguru.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* abituguru.c Copyright (c) 2005-2006 Hans de Goede <[email protected]>
*/
/*
* This driver supports the sensor part of the first and second revision of
* the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
* of lack of specs the CPU/RAM voltage & frequency control is not supported!
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/dmi.h>
#include <linux/io.h>
/* Banks */
#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
#define ABIT_UGURU_MAX_BANK1_SENSORS 16
/*
* Warning if you increase one of the 2 MAX defines below to 10 or higher you
* should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
*/
/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
#define ABIT_UGURU_MAX_BANK2_SENSORS 6
/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
#define ABIT_UGURU_MAX_PWMS 5
/* uGuru sensor bank 1 flags */ /* Alarm if: */
#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
/* uGuru sensor bank 2 flags */ /* Alarm if: */
#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
/* uGuru sensor bank common flags */
#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
/* uGuru fan PWM (speed control) flags */
#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
/* Values used for conversion */
#define ABIT_UGURU_FAN_MAX 15300 /* RPM */
/* Bank1 sensor types */
#define ABIT_UGURU_IN_SENSOR 0
#define ABIT_UGURU_TEMP_SENSOR 1
#define ABIT_UGURU_NC 2
/*
* In many cases we need to wait for the uGuru to reach a certain status, most
* of the time it will reach this status within 30 - 90 ISA reads, and thus we
* can best busy wait. This define gives the total amount of reads to try.
*/
#define ABIT_UGURU_WAIT_TIMEOUT 125
/*
* However sometimes older versions of the uGuru seem to be distracted and they
* do not respond for a long time. To handle this we sleep before each of the
* last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
*/
#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
/*
* Normally all expected status in abituguru_ready, are reported after the
* first read, but sometimes not and we need to poll.
*/
#define ABIT_UGURU_READY_TIMEOUT 5
/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
#define ABIT_UGURU_MAX_RETRIES 3
#define ABIT_UGURU_RETRY_DELAY (HZ/5)
/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
#define ABIT_UGURU_MAX_TIMEOUTS 2
/* utility macros */
#define ABIT_UGURU_NAME "abituguru"
#define ABIT_UGURU_DEBUG(level, format, arg...) \
do { \
if (level <= verbose) \
pr_debug(format , ## arg); \
} while (0)
/* Macros to help calculate the sysfs_names array length */
/*
* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
* in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
*/
#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
/*
* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
* temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
*/
#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
/*
* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
* fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
*/
#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
/*
* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
* pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
*/
#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
#define ABITUGURU_SYSFS_NAMES_LENGTH ( \
ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
/*
* All the macros below are named identical to the oguru and oguru2 programs
* reverse engineered by Olle Sandberg, hence the names might not be 100%
* logical. I could come up with better names, but I prefer keeping the names
* identical so that this driver can be compared with his work more easily.
*/
/* Two i/o-ports are used by uGuru */
#define ABIT_UGURU_BASE 0x00E0
/* Used to tell uGuru what to read and to read the actual data */
#define ABIT_UGURU_CMD 0x00
/* Mostly used to check if uGuru is busy */
#define ABIT_UGURU_DATA 0x04
#define ABIT_UGURU_REGION_LENGTH 5
/* uGuru status' */
#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
/* Constants */
/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
/*
* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
* correspond to 300-3000 RPM
*/
static const u8 abituguru_bank2_min_threshold = 5;
static const u8 abituguru_bank2_max_threshold = 50;
/*
* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
* are temperature trip points.
*/
static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
/*
* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
* special case the minimum allowed pwm% setting for this is 30% (77) on
* some MB's this special case is handled in the code!
*/
static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
/* Insmod parameters */
static bool force;
module_param(force, bool, 0);
MODULE_PARM_DESC(force, "Set to one to force detection.");
static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
module_param_array(bank1_types, int, NULL, 0);
MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
" -1 autodetect\n"
" 0 volt sensor\n"
" 1 temp sensor\n"
" 2 not connected");
static int fan_sensors;
module_param(fan_sensors, int, 0);
MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
"(0 = autodetect)");
static int pwms;
module_param(pwms, int, 0);
MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
"(0 = autodetect)");
/* Default verbose is 2, since this driver is still in the testing phase */
static int verbose = 2;
module_param(verbose, int, 0644);
MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
" 0 normal output\n"
" 1 + verbose error reporting\n"
" 2 + sensors type probing info\n"
" 3 + retryable error reporting");
/*
* For the Abit uGuru, we need to keep some data in memory.
* The structure is dynamically allocated, at the same time when a new
* abituguru device is allocated.
*/
struct abituguru_data {
struct device *hwmon_dev; /* hwmon registered device */
struct mutex update_lock; /* protect access to data and uGuru */
unsigned long last_updated; /* In jiffies */
unsigned short addr; /* uguru base address */
char uguru_ready; /* is the uguru in ready state? */
unsigned char update_timeouts; /*
* number of update timeouts since last
* successful update
*/
/*
* The sysfs attr and their names are generated automatically, for bank1
* we cannot use a predefined array because we don't know beforehand
* of a sensor is a volt or a temp sensor, for bank2 and the pwms its
* easier todo things the same way. For in sensors we have 9 (temp 7)
* sysfs entries per sensor, for bank2 and pwms 6.
*/
struct sensor_device_attribute_2 sysfs_attr[
ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
/* Buffer to store the dynamically generated sysfs names */
char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
/* Bank 1 data */
/* number of and addresses of [0] in, [1] temp sensors */
u8 bank1_sensors[2];
u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
/*
* This array holds 3 entries per sensor for the bank 1 sensor settings
* (flags, min, max for voltage / flags, warn, shutdown for temp).
*/
u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
/*
* Maximum value for each sensor used for scaling in mV/millidegrees
* Celsius.
*/
int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
u8 bank2_sensors; /* actual number of bank2 sensors found */
u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
/* Alarms 2 bytes for bank1, 1 byte for bank2 */
u8 alarms[3];
/* Fan PWM (speed control) 5 bytes per PWM */
u8 pwms; /* actual number of pwms found */
u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
};
static const char *never_happen = "This should never happen.";
static const char *report_this =
"Please report this to the abituguru maintainer (see MAINTAINERS)";
/* wait till the uguru is in the specified state */
static int abituguru_wait(struct abituguru_data *data, u8 state)
{
int timeout = ABIT_UGURU_WAIT_TIMEOUT;
while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
timeout--;
if (timeout == 0)
return -EBUSY;
/*
* sleep a bit before our last few tries, see the comment on
* this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
*/
if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
msleep(0);
}
return 0;
}
/* Put the uguru in ready for input state */
static int abituguru_ready(struct abituguru_data *data)
{
int timeout = ABIT_UGURU_READY_TIMEOUT;
if (data->uguru_ready)
return 0;
/* Reset? / Prepare for next read/write cycle */
outb(0x00, data->addr + ABIT_UGURU_DATA);
/* Wait till the uguru is ready */
if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
ABIT_UGURU_DEBUG(1,
"timeout exceeded waiting for ready state\n");
return -EIO;
}
/* Cmd port MUST be read now and should contain 0xAC */
while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
timeout--;
if (timeout == 0) {
ABIT_UGURU_DEBUG(1,
"CMD reg does not hold 0xAC after ready command\n");
return -EIO;
}
msleep(0);
}
/*
* After this the ABIT_UGURU_DATA port should contain
* ABIT_UGURU_STATUS_INPUT
*/
timeout = ABIT_UGURU_READY_TIMEOUT;
while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
timeout--;
if (timeout == 0) {
ABIT_UGURU_DEBUG(1,
"state != more input after ready command\n");
return -EIO;
}
msleep(0);
}
data->uguru_ready = 1;
return 0;
}
/*
* Send the bank and then sensor address to the uGuru for the next read/write
* cycle. This function gets called as the first part of a read/write by
* abituguru_read and abituguru_write. This function should never be
* called by any other function.
*/
static int abituguru_send_address(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, int retries)
{
/*
* assume the caller does error handling itself if it has not requested
* any retries, and thus be quiet.
*/
int report_errors = retries;
for (;;) {
/*
* Make sure the uguru is ready and then send the bank address,
* after this the uguru is no longer "ready".
*/
if (abituguru_ready(data) != 0)
return -EIO;
outb(bank_addr, data->addr + ABIT_UGURU_DATA);
data->uguru_ready = 0;
/*
* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
* and send the sensor addr
*/
if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
if (retries) {
ABIT_UGURU_DEBUG(3, "timeout exceeded "
"waiting for more input state, %d "
"tries remaining\n", retries);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(ABIT_UGURU_RETRY_DELAY);
retries--;
continue;
}
if (report_errors)
ABIT_UGURU_DEBUG(1, "timeout exceeded "
"waiting for more input state "
"(bank: %d)\n", (int)bank_addr);
return -EBUSY;
}
outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
return 0;
}
}
/*
* Read count bytes from sensor sensor_addr in bank bank_addr and store the
* result in buf, retry the send address part of the read retries times.
*/
static int abituguru_read(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
{
int i;
/* Send the address */
i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
if (i)
return i;
/* And read the data */
for (i = 0; i < count; i++) {
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
ABIT_UGURU_DEBUG(retries ? 1 : 3,
"timeout exceeded waiting for "
"read state (bank: %d, sensor: %d)\n",
(int)bank_addr, (int)sensor_addr);
break;
}
buf[i] = inb(data->addr + ABIT_UGURU_CMD);
}
/* Last put the chip back in ready state */
abituguru_ready(data);
return i;
}
/*
* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
* address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
*/
static int abituguru_write(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
{
/*
* We use the ready timeout as we have to wait for 0xAC just like the
* ready function
*/
int i, timeout = ABIT_UGURU_READY_TIMEOUT;
/* Send the address */
i = abituguru_send_address(data, bank_addr, sensor_addr,
ABIT_UGURU_MAX_RETRIES);
if (i)
return i;
/* And write the data */
for (i = 0; i < count; i++) {
if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
"write state (bank: %d, sensor: %d)\n",
(int)bank_addr, (int)sensor_addr);
break;
}
outb(buf[i], data->addr + ABIT_UGURU_CMD);
}
/*
* Now we need to wait till the chip is ready to be read again,
* so that we can read 0xAC as confirmation that our write has
* succeeded.
*/
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
(int)sensor_addr);
return -EIO;
}
/* Cmd port MUST be read now and should contain 0xAC */
while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
timeout--;
if (timeout == 0) {
ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
"write (bank: %d, sensor: %d)\n",
(int)bank_addr, (int)sensor_addr);
return -EIO;
}
msleep(0);
}
/* Last put the chip back in ready state */
abituguru_ready(data);
return i;
}
/*
* Detect sensor type. Temp and Volt sensors are enabled with
* different masks and will ignore enable masks not meant for them.
* This enables us to test what kind of sensor we're dealing with.
* By setting the alarm thresholds so that we will always get an
* alarm for sensor type X and then enabling the sensor as sensor type
* X, if we then get an alarm it is a sensor of type X.
*/
static int
abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
u8 sensor_addr)
{
u8 val, test_flag, buf[3];
int i, ret = -ENODEV; /* error is the most common used retval :| */
/* If overriden by the user return the user selected type */
if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
"%d because of \"bank1_types\" module param\n",
bank1_types[sensor_addr], (int)sensor_addr);
return bank1_types[sensor_addr];
}
/* First read the sensor and the current settings */
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
1, ABIT_UGURU_MAX_RETRIES) != 1)
return -ENODEV;
/* Test val is sane / usable for sensor type detection. */
if ((val < 10u) || (val > 250u)) {
pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
"unable to determine sensor type, skipping sensor\n",
(int)sensor_addr, (int)val);
/*
* assume no sensor is there for sensors for which we can't
* determine the sensor type because their reading is too close
* to their limits, this usually means no sensor is there.
*/
return ABIT_UGURU_NC;
}
ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
/*
* Volt sensor test, enable volt low alarm, set min value ridiculously
* high, or vica versa if the reading is very high. If its a volt
* sensor this should always give us an alarm.
*/
if (val <= 240u) {
buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
buf[1] = 245;
buf[2] = 250;
test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
} else {
buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
buf[1] = 5;
buf[2] = 10;
test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
}
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
buf, 3) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
/*
* Now we need 20 ms to give the uguru time to read the sensors
* and raise a voltage alarm
*/
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/50);
/* Check for alarm and check the alarm is a volt low alarm. */
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
sensor_addr, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
if (buf[0] & test_flag) {
ABIT_UGURU_DEBUG(2, " found volt sensor\n");
ret = ABIT_UGURU_IN_SENSOR;
goto abituguru_detect_bank1_sensor_type_exit;
} else
ABIT_UGURU_DEBUG(2, " alarm raised during volt "
"sensor test, but volt range flag not set\n");
} else
ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
"test\n");
/*
* Temp sensor test, enable sensor as a temp sensor, set beep value
* ridiculously low (but not too low, otherwise uguru ignores it).
* If its a temp sensor this should always give us an alarm.
*/
buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
buf[1] = 5;
buf[2] = 10;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
buf, 3) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
/*
* Now we need 50 ms to give the uguru time to read the sensors
* and raise a temp alarm
*/
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/20);
/* Check for alarm and check the alarm is a temp high alarm. */
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
sensor_addr, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
ABIT_UGURU_DEBUG(2, " found temp sensor\n");
ret = ABIT_UGURU_TEMP_SENSOR;
goto abituguru_detect_bank1_sensor_type_exit;
} else
ABIT_UGURU_DEBUG(2, " alarm raised during temp "
"sensor test, but temp high flag not set\n");
} else
ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
"test\n");
ret = ABIT_UGURU_NC;
abituguru_detect_bank1_sensor_type_exit:
/*
* Restore original settings, failing here is really BAD, it has been
* reported that some BIOS-es hang when entering the uGuru menu with
* invalid settings present in the uGuru, so we try this 3 times.
*/
for (i = 0; i < 3; i++)
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
sensor_addr, data->bank1_settings[sensor_addr],
3) == 3)
break;
if (i == 3) {
pr_err("Fatal error could not restore original settings. %s %s\n",
never_happen, report_this);
return -ENODEV;
}
return ret;
}
/*
* These functions try to find out how many sensors there are in bank2 and how
* many pwms there are. The purpose of this is to make sure that we don't give
* the user the possibility to change settings for non-existent sensors / pwm.
* The uGuru will happily read / write whatever memory happens to be after the
* memory storing the PWM settings when reading/writing to a PWM which is not
* there. Notice even if we detect a PWM which doesn't exist we normally won't
* write to it, unless the user tries to change the settings.
*
* Although the uGuru allows reading (settings) from non existing bank2
* sensors, my version of the uGuru does seem to stop writing to them, the
* write function above aborts in this case with:
* "CMD reg does not hold 0xAC after write"
*
* Notice these 2 tests are non destructive iow read-only tests, otherwise
* they would defeat their purpose. Although for the bank2_sensors detection a
* read/write test would be feasible because of the reaction above, I've
* however opted to stay on the safe side.
*/
static void
abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
{
int i;
if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
data->bank2_sensors = fan_sensors;
ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
"\"fan_sensors\" module param\n",
(int)data->bank2_sensors);
return;
}
ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
/*
* 0x89 are the known used bits:
* -0x80 enable shutdown
* -0x08 enable beep
* -0x01 enable alarm
* All other bits should be 0, but on some motherboards
* 0x40 (bit 6) is also high for some of the fans??
*/
if (data->bank2_settings[i][0] & ~0xC9) {
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
"to be a fan sensor: settings[0] = %02X\n",
i, (unsigned int)data->bank2_settings[i][0]);
break;
}
/* check if the threshold is within the allowed range */
if (data->bank2_settings[i][1] <
abituguru_bank2_min_threshold) {
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
"to be a fan sensor: the threshold (%d) is "
"below the minimum (%d)\n", i,
(int)data->bank2_settings[i][1],
(int)abituguru_bank2_min_threshold);
break;
}
if (data->bank2_settings[i][1] >
abituguru_bank2_max_threshold) {
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
"to be a fan sensor: the threshold (%d) is "
"above the maximum (%d)\n", i,
(int)data->bank2_settings[i][1],
(int)abituguru_bank2_max_threshold);
break;
}
}
data->bank2_sensors = i;
ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
(int)data->bank2_sensors);
}
static void
abituguru_detect_no_pwms(struct abituguru_data *data)
{
int i, j;
if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
data->pwms = pwms;
ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
"\"pwms\" module param\n", (int)data->pwms);
return;
}
ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
/*
* 0x80 is the enable bit and the low
* nibble is which temp sensor to use,
* the other bits should be 0
*/
if (data->pwm_settings[i][0] & ~0x8F) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: settings[0] = %02X\n",
i, (unsigned int)data->pwm_settings[i][0]);
break;
}
/*
* the low nibble must correspond to one of the temp sensors
* we've found
*/
for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
j++) {
if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
(data->pwm_settings[i][0] & 0x0F))
break;
}
if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: %d is not a valid temp "
"sensor address\n", i,
data->pwm_settings[i][0] & 0x0F);
break;
}
/* check if all other settings are within the allowed range */
for (j = 1; j < 5; j++) {
u8 min;
/* special case pwm1 min pwm% */
if ((i == 0) && ((j == 1) || (j == 2)))
min = 77;
else
min = abituguru_pwm_min[j];
if (data->pwm_settings[i][j] < min) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does "
"not seem to be a pwm channel: "
"setting %d (%d) is below the minimum "
"value (%d)\n", i, j,
(int)data->pwm_settings[i][j],
(int)min);
goto abituguru_detect_no_pwms_exit;
}
if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does "
"not seem to be a pwm channel: "
"setting %d (%d) is above the maximum "
"value (%d)\n", i, j,
(int)data->pwm_settings[i][j],
(int)abituguru_pwm_max[j]);
goto abituguru_detect_no_pwms_exit;
}
}
/* check that min temp < max temp and min pwm < max pwm */
if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: min pwm (%d) >= "
"max pwm (%d)\n", i,
(int)data->pwm_settings[i][1],
(int)data->pwm_settings[i][2]);
break;
}
if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: min temp (%d) >= "
"max temp (%d)\n", i,
(int)data->pwm_settings[i][3],
(int)data->pwm_settings[i][4]);
break;
}
}
abituguru_detect_no_pwms_exit:
data->pwms = i;
ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
}
/*
* Following are the sysfs callback functions. These functions expect:
* sensor_device_attribute_2->index: sensor address/offset in the bank
* sensor_device_attribute_2->nr: register offset, bitmask or NA.
*/
static struct abituguru_data *abituguru_update_device(struct device *dev);
static ssize_t show_bank1_value(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
data->bank1_max_value[attr->index] + 128) / 255);
}
static ssize_t show_bank1_setting(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n",
(data->bank1_settings[attr->index][attr->nr] *
data->bank1_max_value[attr->index] + 128) / 255);
}
static ssize_t show_bank2_value(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
ABIT_UGURU_FAN_MAX + 128) / 255);
}
static ssize_t show_bank2_setting(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n",
(data->bank2_settings[attr->index][attr->nr] *
ABIT_UGURU_FAN_MAX + 128) / 255);
}
static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
unsigned long val;
ssize_t ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
ret = count;
val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
data->bank1_max_value[attr->index];
if (val > 255)
return -EINVAL;
mutex_lock(&data->update_lock);
if (data->bank1_settings[attr->index][attr->nr] != val) {
u8 orig_val = data->bank1_settings[attr->index][attr->nr];
data->bank1_settings[attr->index][attr->nr] = val;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
attr->index, data->bank1_settings[attr->index],
3) <= attr->nr) {
data->bank1_settings[attr->index][attr->nr] = orig_val;
ret = -EIO;
}
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
unsigned long val;
ssize_t ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
ret = count;
val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
/* this check can be done before taking the lock */
if (val < abituguru_bank2_min_threshold ||
val > abituguru_bank2_max_threshold)
return -EINVAL;
mutex_lock(&data->update_lock);
if (data->bank2_settings[attr->index][attr->nr] != val) {
u8 orig_val = data->bank2_settings[attr->index][attr->nr];
data->bank2_settings[attr->index][attr->nr] = val;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
attr->index, data->bank2_settings[attr->index],
2) <= attr->nr) {
data->bank2_settings[attr->index][attr->nr] = orig_val;
ret = -EIO;
}
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t show_bank1_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
/*
* See if the alarm bit for this sensor is set, and if the
* alarm matches the type of alarm we're looking for (for volt
* it can be either low or high). The type is stored in a few
* readonly bits in the settings part of the relevant sensor.
* The bitmask of the type is passed to us in attr->nr.
*/
if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
(data->bank1_settings[attr->index][0] & attr->nr))
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t show_bank2_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
if (data->alarms[2] & (0x01 << attr->index))
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t show_bank1_mask(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
if (data->bank1_settings[attr->index][0] & attr->nr)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t show_bank2_mask(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
if (data->bank2_settings[attr->index][0] & attr->nr)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t store_bank1_mask(struct device *dev,
struct device_attribute *devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
ssize_t ret;
u8 orig_val;
unsigned long mask;
ret = kstrtoul(buf, 10, &mask);
if (ret)
return ret;
ret = count;
mutex_lock(&data->update_lock);
orig_val = data->bank1_settings[attr->index][0];
if (mask)
data->bank1_settings[attr->index][0] |= attr->nr;
else
data->bank1_settings[attr->index][0] &= ~attr->nr;
if ((data->bank1_settings[attr->index][0] != orig_val) &&
(abituguru_write(data,
ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
data->bank1_settings[attr->index], 3) < 1)) {
data->bank1_settings[attr->index][0] = orig_val;
ret = -EIO;
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t store_bank2_mask(struct device *dev,
struct device_attribute *devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
ssize_t ret;
u8 orig_val;
unsigned long mask;
ret = kstrtoul(buf, 10, &mask);
if (ret)
return ret;
ret = count;
mutex_lock(&data->update_lock);