forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbooting-without-of.txt
2703 lines (2199 loc) · 101 KB
/
booting-without-of.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Booting the Linux/ppc kernel without Open Firmware
--------------------------------------------------
(c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
IBM Corp.
(c) 2005 Becky Bruce <becky.bruce at freescale.com>,
Freescale Semiconductor, FSL SOC and 32-bit additions
(c) 2006 MontaVista Software, Inc.
Flash chip node definition
Table of Contents
=================
I - Introduction
1) Entry point for arch/powerpc
2) Board support
II - The DT block format
1) Header
2) Device tree generalities
3) Device tree "structure" block
4) Device tree "strings" block
III - Required content of the device tree
1) Note about cells and address representation
2) Note about "compatible" properties
3) Note about "name" properties
4) Note about node and property names and character set
5) Required nodes and properties
a) The root node
b) The /cpus node
c) The /cpus/* nodes
d) the /memory node(s)
e) The /chosen node
f) the /soc<SOCname> node
IV - "dtc", the device tree compiler
V - Recommendations for a bootloader
VI - System-on-a-chip devices and nodes
1) Defining child nodes of an SOC
2) Representing devices without a current OF specification
a) PHY nodes
b) Interrupt controllers
c) CFI or JEDEC memory-mapped NOR flash
d) 4xx/Axon EMAC ethernet nodes
e) Xilinx IP cores
f) USB EHCI controllers
g) MDIO on GPIOs
h) SPI busses
VII - Marvell Discovery mv64[345]6x System Controller chips
1) The /system-controller node
2) Child nodes of /system-controller
a) Marvell Discovery MDIO bus
b) Marvell Discovery ethernet controller
c) Marvell Discovery PHY nodes
d) Marvell Discovery SDMA nodes
e) Marvell Discovery BRG nodes
f) Marvell Discovery CUNIT nodes
g) Marvell Discovery MPSCROUTING nodes
h) Marvell Discovery MPSCINTR nodes
i) Marvell Discovery MPSC nodes
j) Marvell Discovery Watch Dog Timer nodes
k) Marvell Discovery I2C nodes
l) Marvell Discovery PIC (Programmable Interrupt Controller) nodes
m) Marvell Discovery MPP (Multipurpose Pins) multiplexing nodes
n) Marvell Discovery GPP (General Purpose Pins) nodes
o) Marvell Discovery PCI host bridge node
p) Marvell Discovery CPU Error nodes
q) Marvell Discovery SRAM Controller nodes
r) Marvell Discovery PCI Error Handler nodes
s) Marvell Discovery Memory Controller nodes
VIII - Specifying interrupt information for devices
1) interrupts property
2) interrupt-parent property
3) OpenPIC Interrupt Controllers
4) ISA Interrupt Controllers
IX - Specifying GPIO information for devices
1) gpios property
2) gpio-controller nodes
X - Specifying device power management information (sleep property)
Appendix A - Sample SOC node for MPC8540
Revision Information
====================
May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet.
May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or
clarifies the fact that a lot of things are
optional, the kernel only requires a very
small device tree, though it is encouraged
to provide an as complete one as possible.
May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM
- Misc fixes
- Define version 3 and new format version 16
for the DT block (version 16 needs kernel
patches, will be fwd separately).
String block now has a size, and full path
is replaced by unit name for more
compactness.
linux,phandle is made optional, only nodes
that are referenced by other nodes need it.
"name" property is now automatically
deduced from the unit name
June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and
OF_DT_END_NODE in structure definition.
- Change version 16 format to always align
property data to 4 bytes. Since tokens are
already aligned, that means no specific
required alignment between property size
and property data. The old style variable
alignment would make it impossible to do
"simple" insertion of properties using
memmove (thanks Milton for
noticing). Updated kernel patch as well
- Correct a few more alignment constraints
- Add a chapter about the device-tree
compiler and the textural representation of
the tree that can be "compiled" by dtc.
November 21, 2005: Rev 0.5
- Additions/generalizations for 32-bit
- Changed to reflect the new arch/powerpc
structure
- Added chapter VI
ToDo:
- Add some definitions of interrupt tree (simple/complex)
- Add some definitions for PCI host bridges
- Add some common address format examples
- Add definitions for standard properties and "compatible"
names for cells that are not already defined by the existing
OF spec.
- Compare FSL SOC use of PCI to standard and make sure no new
node definition required.
- Add more information about node definitions for SOC devices
that currently have no standard, like the FSL CPM.
I - Introduction
================
During the recent development of the Linux/ppc64 kernel, and more
specifically, the addition of new platform types outside of the old
IBM pSeries/iSeries pair, it was decided to enforce some strict rules
regarding the kernel entry and bootloader <-> kernel interfaces, in
order to avoid the degeneration that had become the ppc32 kernel entry
point and the way a new platform should be added to the kernel. The
legacy iSeries platform breaks those rules as it predates this scheme,
but no new board support will be accepted in the main tree that
doesn't follows them properly. In addition, since the advent of the
arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
platforms and 32-bit platforms which move into arch/powerpc will be
required to use these rules as well.
The main requirement that will be defined in more detail below is
the presence of a device-tree whose format is defined after Open
Firmware specification. However, in order to make life easier
to embedded board vendors, the kernel doesn't require the device-tree
to represent every device in the system and only requires some nodes
and properties to be present. This will be described in detail in
section III, but, for example, the kernel does not require you to
create a node for every PCI device in the system. It is a requirement
to have a node for PCI host bridges in order to provide interrupt
routing informations and memory/IO ranges, among others. It is also
recommended to define nodes for on chip devices and other busses that
don't specifically fit in an existing OF specification. This creates a
great flexibility in the way the kernel can then probe those and match
drivers to device, without having to hard code all sorts of tables. It
also makes it more flexible for board vendors to do minor hardware
upgrades without significantly impacting the kernel code or cluttering
it with special cases.
1) Entry point for arch/powerpc
-------------------------------
There is one and one single entry point to the kernel, at the start
of the kernel image. That entry point supports two calling
conventions:
a) Boot from Open Firmware. If your firmware is compatible
with Open Firmware (IEEE 1275) or provides an OF compatible
client interface API (support for "interpret" callback of
forth words isn't required), you can enter the kernel with:
r5 : OF callback pointer as defined by IEEE 1275
bindings to powerpc. Only the 32-bit client interface
is currently supported
r3, r4 : address & length of an initrd if any or 0
The MMU is either on or off; the kernel will run the
trampoline located in arch/powerpc/kernel/prom_init.c to
extract the device-tree and other information from open
firmware and build a flattened device-tree as described
in b). prom_init() will then re-enter the kernel using
the second method. This trampoline code runs in the
context of the firmware, which is supposed to handle all
exceptions during that time.
b) Direct entry with a flattened device-tree block. This entry
point is called by a) after the OF trampoline and can also be
called directly by a bootloader that does not support the Open
Firmware client interface. It is also used by "kexec" to
implement "hot" booting of a new kernel from a previous
running one. This method is what I will describe in more
details in this document, as method a) is simply standard Open
Firmware, and thus should be implemented according to the
various standard documents defining it and its binding to the
PowerPC platform. The entry point definition then becomes:
r3 : physical pointer to the device-tree block
(defined in chapter II) in RAM
r4 : physical pointer to the kernel itself. This is
used by the assembly code to properly disable the MMU
in case you are entering the kernel with MMU enabled
and a non-1:1 mapping.
r5 : NULL (as to differentiate with method a)
Note about SMP entry: Either your firmware puts your other
CPUs in some sleep loop or spin loop in ROM where you can get
them out via a soft reset or some other means, in which case
you don't need to care, or you'll have to enter the kernel
with all CPUs. The way to do that with method b) will be
described in a later revision of this document.
2) Board support
----------------
64-bit kernels:
Board supports (platforms) are not exclusive config options. An
arbitrary set of board supports can be built in a single kernel
image. The kernel will "know" what set of functions to use for a
given platform based on the content of the device-tree. Thus, you
should:
a) add your platform support as a _boolean_ option in
arch/powerpc/Kconfig, following the example of PPC_PSERIES,
PPC_PMAC and PPC_MAPLE. The later is probably a good
example of a board support to start from.
b) create your main platform file as
"arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
to the Makefile under the condition of your CONFIG_
option. This file will define a structure of type "ppc_md"
containing the various callbacks that the generic code will
use to get to your platform specific code
c) Add a reference to your "ppc_md" structure in the
"machines" table in arch/powerpc/kernel/setup_64.c if you are
a 64-bit platform.
d) request and get assigned a platform number (see PLATFORM_*
constants in arch/powerpc/include/asm/processor.h
32-bit embedded kernels:
Currently, board support is essentially an exclusive config option.
The kernel is configured for a single platform. Part of the reason
for this is to keep kernels on embedded systems small and efficient;
part of this is due to the fact the code is already that way. In the
future, a kernel may support multiple platforms, but only if the
platforms feature the same core architecture. A single kernel build
cannot support both configurations with Book E and configurations
with classic Powerpc architectures.
32-bit embedded platforms that are moved into arch/powerpc using a
flattened device tree should adopt the merged tree practice of
setting ppc_md up dynamically, even though the kernel is currently
built with support for only a single platform at a time. This allows
unification of the setup code, and will make it easier to go to a
multiple-platform-support model in the future.
NOTE: I believe the above will be true once Ben's done with the merge
of the boot sequences.... someone speak up if this is wrong!
To add a 32-bit embedded platform support, follow the instructions
for 64-bit platforms above, with the exception that the Kconfig
option should be set up such that the kernel builds exclusively for
the platform selected. The processor type for the platform should
enable another config option to select the specific board
supported.
NOTE: If Ben doesn't merge the setup files, may need to change this to
point to setup_32.c
I will describe later the boot process and various callbacks that
your platform should implement.
II - The DT block format
========================
This chapter defines the actual format of the flattened device-tree
passed to the kernel. The actual content of it and kernel requirements
are described later. You can find example of code manipulating that
format in various places, including arch/powerpc/kernel/prom_init.c
which will generate a flattened device-tree from the Open Firmware
representation, or the fs2dt utility which is part of the kexec tools
which will generate one from a filesystem representation. It is
expected that a bootloader like uboot provides a bit more support,
that will be discussed later as well.
Note: The block has to be in main memory. It has to be accessible in
both real mode and virtual mode with no mapping other than main
memory. If you are writing a simple flash bootloader, it should copy
the block to RAM before passing it to the kernel.
1) Header
---------
The kernel is entered with r3 pointing to an area of memory that is
roughly described in arch/powerpc/include/asm/prom.h by the structure
boot_param_header:
struct boot_param_header {
u32 magic; /* magic word OF_DT_HEADER */
u32 totalsize; /* total size of DT block */
u32 off_dt_struct; /* offset to structure */
u32 off_dt_strings; /* offset to strings */
u32 off_mem_rsvmap; /* offset to memory reserve map
*/
u32 version; /* format version */
u32 last_comp_version; /* last compatible version */
/* version 2 fields below */
u32 boot_cpuid_phys; /* Which physical CPU id we're
booting on */
/* version 3 fields below */
u32 size_dt_strings; /* size of the strings block */
/* version 17 fields below */
u32 size_dt_struct; /* size of the DT structure block */
};
Along with the constants:
/* Definitions used by the flattened device tree */
#define OF_DT_HEADER 0xd00dfeed /* 4: version,
4: total size */
#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name
*/
#define OF_DT_END_NODE 0x2 /* End node */
#define OF_DT_PROP 0x3 /* Property: name off,
size, content */
#define OF_DT_END 0x9
All values in this header are in big endian format, the various
fields in this header are defined more precisely below. All
"offset" values are in bytes from the start of the header; that is
from the value of r3.
- magic
This is a magic value that "marks" the beginning of the
device-tree block header. It contains the value 0xd00dfeed and is
defined by the constant OF_DT_HEADER
- totalsize
This is the total size of the DT block including the header. The
"DT" block should enclose all data structures defined in this
chapter (who are pointed to by offsets in this header). That is,
the device-tree structure, strings, and the memory reserve map.
- off_dt_struct
This is an offset from the beginning of the header to the start
of the "structure" part the device tree. (see 2) device tree)
- off_dt_strings
This is an offset from the beginning of the header to the start
of the "strings" part of the device-tree
- off_mem_rsvmap
This is an offset from the beginning of the header to the start
of the reserved memory map. This map is a list of pairs of 64-
bit integers. Each pair is a physical address and a size. The
list is terminated by an entry of size 0. This map provides the
kernel with a list of physical memory areas that are "reserved"
and thus not to be used for memory allocations, especially during
early initialization. The kernel needs to allocate memory during
boot for things like un-flattening the device-tree, allocating an
MMU hash table, etc... Those allocations must be done in such a
way to avoid overriding critical things like, on Open Firmware
capable machines, the RTAS instance, or on some pSeries, the TCE
tables used for the iommu. Typically, the reserve map should
contain _at least_ this DT block itself (header,total_size). If
you are passing an initrd to the kernel, you should reserve it as
well. You do not need to reserve the kernel image itself. The map
should be 64-bit aligned.
- version
This is the version of this structure. Version 1 stops
here. Version 2 adds an additional field boot_cpuid_phys.
Version 3 adds the size of the strings block, allowing the kernel
to reallocate it easily at boot and free up the unused flattened
structure after expansion. Version 16 introduces a new more
"compact" format for the tree itself that is however not backward
compatible. Version 17 adds an additional field, size_dt_struct,
allowing it to be reallocated or moved more easily (this is
particularly useful for bootloaders which need to make
adjustments to a device tree based on probed information). You
should always generate a structure of the highest version defined
at the time of your implementation. Currently that is version 17,
unless you explicitly aim at being backward compatible.
- last_comp_version
Last compatible version. This indicates down to what version of
the DT block you are backward compatible. For example, version 2
is backward compatible with version 1 (that is, a kernel build
for version 1 will be able to boot with a version 2 format). You
should put a 1 in this field if you generate a device tree of
version 1 to 3, or 16 if you generate a tree of version 16 or 17
using the new unit name format.
- boot_cpuid_phys
This field only exist on version 2 headers. It indicate which
physical CPU ID is calling the kernel entry point. This is used,
among others, by kexec. If you are on an SMP system, this value
should match the content of the "reg" property of the CPU node in
the device-tree corresponding to the CPU calling the kernel entry
point (see further chapters for more informations on the required
device-tree contents)
- size_dt_strings
This field only exists on version 3 and later headers. It
gives the size of the "strings" section of the device tree (which
starts at the offset given by off_dt_strings).
- size_dt_struct
This field only exists on version 17 and later headers. It gives
the size of the "structure" section of the device tree (which
starts at the offset given by off_dt_struct).
So the typical layout of a DT block (though the various parts don't
need to be in that order) looks like this (addresses go from top to
bottom):
------------------------------
r3 -> | struct boot_param_header |
------------------------------
| (alignment gap) (*) |
------------------------------
| memory reserve map |
------------------------------
| (alignment gap) |
------------------------------
| |
| device-tree structure |
| |
------------------------------
| (alignment gap) |
------------------------------
| |
| device-tree strings |
| |
-----> ------------------------------
|
|
--- (r3 + totalsize)
(*) The alignment gaps are not necessarily present; their presence
and size are dependent on the various alignment requirements of
the individual data blocks.
2) Device tree generalities
---------------------------
This device-tree itself is separated in two different blocks, a
structure block and a strings block. Both need to be aligned to a 4
byte boundary.
First, let's quickly describe the device-tree concept before detailing
the storage format. This chapter does _not_ describe the detail of the
required types of nodes & properties for the kernel, this is done
later in chapter III.
The device-tree layout is strongly inherited from the definition of
the Open Firmware IEEE 1275 device-tree. It's basically a tree of
nodes, each node having two or more named properties. A property can
have a value or not.
It is a tree, so each node has one and only one parent except for the
root node who has no parent.
A node has 2 names. The actual node name is generally contained in a
property of type "name" in the node property list whose value is a
zero terminated string and is mandatory for version 1 to 3 of the
format definition (as it is in Open Firmware). Version 16 makes it
optional as it can generate it from the unit name defined below.
There is also a "unit name" that is used to differentiate nodes with
the same name at the same level, it is usually made of the node
names, the "@" sign, and a "unit address", which definition is
specific to the bus type the node sits on.
The unit name doesn't exist as a property per-se but is included in
the device-tree structure. It is typically used to represent "path" in
the device-tree. More details about the actual format of these will be
below.
The kernel powerpc generic code does not make any formal use of the
unit address (though some board support code may do) so the only real
requirement here for the unit address is to ensure uniqueness of
the node unit name at a given level of the tree. Nodes with no notion
of address and no possible sibling of the same name (like /memory or
/cpus) may omit the unit address in the context of this specification,
or use the "@0" default unit address. The unit name is used to define
a node "full path", which is the concatenation of all parent node
unit names separated with "/".
The root node doesn't have a defined name, and isn't required to have
a name property either if you are using version 3 or earlier of the
format. It also has no unit address (no @ symbol followed by a unit
address). The root node unit name is thus an empty string. The full
path to the root node is "/".
Every node which actually represents an actual device (that is, a node
which isn't only a virtual "container" for more nodes, like "/cpus"
is) is also required to have a "device_type" property indicating the
type of node .
Finally, every node that can be referenced from a property in another
node is required to have a "linux,phandle" property. Real open
firmware implementations provide a unique "phandle" value for every
node that the "prom_init()" trampoline code turns into
"linux,phandle" properties. However, this is made optional if the
flattened device tree is used directly. An example of a node
referencing another node via "phandle" is when laying out the
interrupt tree which will be described in a further version of this
document.
This "linux, phandle" property is a 32-bit value that uniquely
identifies a node. You are free to use whatever values or system of
values, internal pointers, or whatever to generate these, the only
requirement is that every node for which you provide that property has
a unique value for it.
Here is an example of a simple device-tree. In this example, an "o"
designates a node followed by the node unit name. Properties are
presented with their name followed by their content. "content"
represents an ASCII string (zero terminated) value, while <content>
represents a 32-bit hexadecimal value. The various nodes in this
example will be discussed in a later chapter. At this point, it is
only meant to give you a idea of what a device-tree looks like. I have
purposefully kept the "name" and "linux,phandle" properties which
aren't necessary in order to give you a better idea of what the tree
looks like in practice.
/ o device-tree
|- name = "device-tree"
|- model = "MyBoardName"
|- compatible = "MyBoardFamilyName"
|- #address-cells = <2>
|- #size-cells = <2>
|- linux,phandle = <0>
|
o cpus
| | - name = "cpus"
| | - linux,phandle = <1>
| | - #address-cells = <1>
| | - #size-cells = <0>
| |
| o PowerPC,970@0
| |- name = "PowerPC,970"
| |- device_type = "cpu"
| |- reg = <0>
| |- clock-frequency = <5f5e1000>
| |- 64-bit
| |- linux,phandle = <2>
|
o memory@0
| |- name = "memory"
| |- device_type = "memory"
| |- reg = <00000000 00000000 00000000 20000000>
| |- linux,phandle = <3>
|
o chosen
|- name = "chosen"
|- bootargs = "root=/dev/sda2"
|- linux,phandle = <4>
This tree is almost a minimal tree. It pretty much contains the
minimal set of required nodes and properties to boot a linux kernel;
that is, some basic model informations at the root, the CPUs, and the
physical memory layout. It also includes misc information passed
through /chosen, like in this example, the platform type (mandatory)
and the kernel command line arguments (optional).
The /cpus/PowerPC,970@0/64-bit property is an example of a
property without a value. All other properties have a value. The
significance of the #address-cells and #size-cells properties will be
explained in chapter IV which defines precisely the required nodes and
properties and their content.
3) Device tree "structure" block
The structure of the device tree is a linearized tree structure. The
"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE"
ends that node definition. Child nodes are simply defined before
"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32
bit value. The tree has to be "finished" with a OF_DT_END token
Here's the basic structure of a single node:
* token OF_DT_BEGIN_NODE (that is 0x00000001)
* for version 1 to 3, this is the node full path as a zero
terminated string, starting with "/". For version 16 and later,
this is the node unit name only (or an empty string for the
root node)
* [align gap to next 4 bytes boundary]
* for each property:
* token OF_DT_PROP (that is 0x00000003)
* 32-bit value of property value size in bytes (or 0 if no
value)
* 32-bit value of offset in string block of property name
* property value data if any
* [align gap to next 4 bytes boundary]
* [child nodes if any]
* token OF_DT_END_NODE (that is 0x00000002)
So the node content can be summarized as a start token, a full path,
a list of properties, a list of child nodes, and an end token. Every
child node is a full node structure itself as defined above.
NOTE: The above definition requires that all property definitions for
a particular node MUST precede any subnode definitions for that node.
Although the structure would not be ambiguous if properties and
subnodes were intermingled, the kernel parser requires that the
properties come first (up until at least 2.6.22). Any tools
manipulating a flattened tree must take care to preserve this
constraint.
4) Device tree "strings" block
In order to save space, property names, which are generally redundant,
are stored separately in the "strings" block. This block is simply the
whole bunch of zero terminated strings for all property names
concatenated together. The device-tree property definitions in the
structure block will contain offset values from the beginning of the
strings block.
III - Required content of the device tree
=========================================
WARNING: All "linux,*" properties defined in this document apply only
to a flattened device-tree. If your platform uses a real
implementation of Open Firmware or an implementation compatible with
the Open Firmware client interface, those properties will be created
by the trampoline code in the kernel's prom_init() file. For example,
that's where you'll have to add code to detect your board model and
set the platform number. However, when using the flattened device-tree
entry point, there is no prom_init() pass, and thus you have to
provide those properties yourself.
1) Note about cells and address representation
----------------------------------------------
The general rule is documented in the various Open Firmware
documentations. If you choose to describe a bus with the device-tree
and there exist an OF bus binding, then you should follow the
specification. However, the kernel does not require every single
device or bus to be described by the device tree.
In general, the format of an address for a device is defined by the
parent bus type, based on the #address-cells and #size-cells
properties. Note that the parent's parent definitions of #address-cells
and #size-cells are not inherited so every node with children must specify
them. The kernel requires the root node to have those properties defining
addresses format for devices directly mapped on the processor bus.
Those 2 properties define 'cells' for representing an address and a
size. A "cell" is a 32-bit number. For example, if both contain 2
like the example tree given above, then an address and a size are both
composed of 2 cells, and each is a 64-bit number (cells are
concatenated and expected to be in big endian format). Another example
is the way Apple firmware defines them, with 2 cells for an address
and one cell for a size. Most 32-bit implementations should define
#address-cells and #size-cells to 1, which represents a 32-bit value.
Some 32-bit processors allow for physical addresses greater than 32
bits; these processors should define #address-cells as 2.
"reg" properties are always a tuple of the type "address size" where
the number of cells of address and size is specified by the bus
#address-cells and #size-cells. When a bus supports various address
spaces and other flags relative to a given address allocation (like
prefetchable, etc...) those flags are usually added to the top level
bits of the physical address. For example, a PCI physical address is
made of 3 cells, the bottom two containing the actual address itself
while the top cell contains address space indication, flags, and pci
bus & device numbers.
For busses that support dynamic allocation, it's the accepted practice
to then not provide the address in "reg" (keep it 0) though while
providing a flag indicating the address is dynamically allocated, and
then, to provide a separate "assigned-addresses" property that
contains the fully allocated addresses. See the PCI OF bindings for
details.
In general, a simple bus with no address space bits and no dynamic
allocation is preferred if it reflects your hardware, as the existing
kernel address parsing functions will work out of the box. If you
define a bus type with a more complex address format, including things
like address space bits, you'll have to add a bus translator to the
prom_parse.c file of the recent kernels for your bus type.
The "reg" property only defines addresses and sizes (if #size-cells is
non-0) within a given bus. In order to translate addresses upward
(that is into parent bus addresses, and possibly into CPU physical
addresses), all busses must contain a "ranges" property. If the
"ranges" property is missing at a given level, it's assumed that
translation isn't possible, i.e., the registers are not visible on the
parent bus. The format of the "ranges" property for a bus is a list
of:
bus address, parent bus address, size
"bus address" is in the format of the bus this bus node is defining,
that is, for a PCI bridge, it would be a PCI address. Thus, (bus
address, size) defines a range of addresses for child devices. "parent
bus address" is in the format of the parent bus of this bus. For
example, for a PCI host controller, that would be a CPU address. For a
PCI<->ISA bridge, that would be a PCI address. It defines the base
address in the parent bus where the beginning of that range is mapped.
For a new 64-bit powerpc board, I recommend either the 2/2 format or
Apple's 2/1 format which is slightly more compact since sizes usually
fit in a single 32-bit word. New 32-bit powerpc boards should use a
1/1 format, unless the processor supports physical addresses greater
than 32-bits, in which case a 2/1 format is recommended.
Alternatively, the "ranges" property may be empty, indicating that the
registers are visible on the parent bus using an identity mapping
translation. In other words, the parent bus address space is the same
as the child bus address space.
2) Note about "compatible" properties
-------------------------------------
These properties are optional, but recommended in devices and the root
node. The format of a "compatible" property is a list of concatenated
zero terminated strings. They allow a device to express its
compatibility with a family of similar devices, in some cases,
allowing a single driver to match against several devices regardless
of their actual names.
3) Note about "name" properties
-------------------------------
While earlier users of Open Firmware like OldWorld macintoshes tended
to use the actual device name for the "name" property, it's nowadays
considered a good practice to use a name that is closer to the device
class (often equal to device_type). For example, nowadays, ethernet
controllers are named "ethernet", an additional "model" property
defining precisely the chip type/model, and "compatible" property
defining the family in case a single driver can driver more than one
of these chips. However, the kernel doesn't generally put any
restriction on the "name" property; it is simply considered good
practice to follow the standard and its evolutions as closely as
possible.
Note also that the new format version 16 makes the "name" property
optional. If it's absent for a node, then the node's unit name is then
used to reconstruct the name. That is, the part of the unit name
before the "@" sign is used (or the entire unit name if no "@" sign
is present).
4) Note about node and property names and character set
-------------------------------------------------------
While open firmware provides more flexible usage of 8859-1, this
specification enforces more strict rules. Nodes and properties should
be comprised only of ASCII characters 'a' to 'z', '0' to
'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally
allow uppercase characters 'A' to 'Z' (property names should be
lowercase. The fact that vendors like Apple don't respect this rule is
irrelevant here). Additionally, node and property names should always
begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node
names).
The maximum number of characters for both nodes and property names
is 31. In the case of node names, this is only the leftmost part of
a unit name (the pure "name" property), it doesn't include the unit
address which can extend beyond that limit.
5) Required nodes and properties
--------------------------------
These are all that are currently required. However, it is strongly
recommended that you expose PCI host bridges as documented in the
PCI binding to open firmware, and your interrupt tree as documented
in OF interrupt tree specification.
a) The root node
The root node requires some properties to be present:
- model : this is your board name/model
- #address-cells : address representation for "root" devices
- #size-cells: the size representation for "root" devices
- device_type : This property shouldn't be necessary. However, if
you decide to create a device_type for your root node, make sure it
is _not_ "chrp" unless your platform is a pSeries or PAPR compliant
one for 64-bit, or a CHRP-type machine for 32-bit as this will
matched by the kernel this way.
Additionally, some recommended properties are:
- compatible : the board "family" generally finds its way here,
for example, if you have 2 board models with a similar layout,
that typically get driven by the same platform code in the
kernel, you would use a different "model" property but put a
value in "compatible". The kernel doesn't directly use that
value but it is generally useful.
The root node is also generally where you add additional properties
specific to your board like the serial number if any, that sort of
thing. It is recommended that if you add any "custom" property whose
name may clash with standard defined ones, you prefix them with your
vendor name and a comma.
b) The /cpus node
This node is the parent of all individual CPU nodes. It doesn't
have any specific requirements, though it's generally good practice
to have at least:
#address-cells = <00000001>
#size-cells = <00000000>
This defines that the "address" for a CPU is a single cell, and has
no meaningful size. This is not necessary but the kernel will assume
that format when reading the "reg" properties of a CPU node, see
below
c) The /cpus/* nodes
So under /cpus, you are supposed to create a node for every CPU on
the machine. There is no specific restriction on the name of the
CPU, though It's common practice to call it PowerPC,<name>. For
example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX.
Required properties:
- device_type : has to be "cpu"
- reg : This is the physical CPU number, it's a single 32-bit cell
and is also used as-is as the unit number for constructing the
unit name in the full path. For example, with 2 CPUs, you would
have the full path:
/cpus/PowerPC,970FX@0
/cpus/PowerPC,970FX@1
(unit addresses do not require leading zeroes)
- d-cache-block-size : one cell, L1 data cache block size in bytes (*)
- i-cache-block-size : one cell, L1 instruction cache block size in
bytes
- d-cache-size : one cell, size of L1 data cache in bytes
- i-cache-size : one cell, size of L1 instruction cache in bytes
(*) The cache "block" size is the size on which the cache management
instructions operate. Historically, this document used the cache
"line" size here which is incorrect. The kernel will prefer the cache
block size and will fallback to cache line size for backward
compatibility.
Recommended properties:
- timebase-frequency : a cell indicating the frequency of the
timebase in Hz. This is not directly used by the generic code,
but you are welcome to copy/paste the pSeries code for setting
the kernel timebase/decrementer calibration based on this
value.
- clock-frequency : a cell indicating the CPU core clock frequency
in Hz. A new property will be defined for 64-bit values, but if
your frequency is < 4Ghz, one cell is enough. Here as well as
for the above, the common code doesn't use that property, but
you are welcome to re-use the pSeries or Maple one. A future
kernel version might provide a common function for this.
- d-cache-line-size : one cell, L1 data cache line size in bytes
if different from the block size
- i-cache-line-size : one cell, L1 instruction cache line size in
bytes if different from the block size
You are welcome to add any property you find relevant to your board,
like some information about the mechanism used to soft-reset the
CPUs. For example, Apple puts the GPIO number for CPU soft reset
lines in there as a "soft-reset" property since they start secondary
CPUs by soft-resetting them.
d) the /memory node(s)
To define the physical memory layout of your board, you should
create one or more memory node(s). You can either create a single
node with all memory ranges in its reg property, or you can create
several nodes, as you wish. The unit address (@ part) used for the
full path is the address of the first range of memory defined by a
given node. If you use a single memory node, this will typically be
@0.
Required properties:
- device_type : has to be "memory"
- reg : This property contains all the physical memory ranges of
your board. It's a list of addresses/sizes concatenated
together, with the number of cells of each defined by the
#address-cells and #size-cells of the root node. For example,
with both of these properties being 2 like in the example given
earlier, a 970 based machine with 6Gb of RAM could typically
have a "reg" property here that looks like:
00000000 00000000 00000000 80000000
00000001 00000000 00000001 00000000
That is a range starting at 0 of 0x80000000 bytes and a range
starting at 0x100000000 and of 0x100000000 bytes. You can see
that there is no memory covering the IO hole between 2Gb and
4Gb. Some vendors prefer splitting those ranges into smaller
segments, but the kernel doesn't care.
e) The /chosen node
This node is a bit "special". Normally, that's where open firmware
puts some variable environment information, like the arguments, or
the default input/output devices.
This specification makes a few of these mandatory, but also defines
some linux-specific properties that would be normally constructed by
the prom_init() trampoline when booting with an OF client interface,
but that you have to provide yourself when using the flattened format.
Recommended properties:
- bootargs : This zero-terminated string is passed as the kernel
command line
- linux,stdout-path : This is the full path to your standard
console device if any. Typically, if you have serial devices on
your board, you may want to put the full path to the one set as
the default console in the firmware here, for the kernel to pick
it up as its own default console. If you look at the function
set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see
that the kernel tries to find out the default console and has
knowledge of various types like 8250 serial ports. You may want
to extend this function to add your own.
Note that u-boot creates and fills in the chosen node for platforms
that use it.
(Note: a practice that is now obsolete was to include a property
under /chosen called interrupt-controller which had a phandle value
that pointed to the main interrupt controller)
f) the /soc<SOCname> node
This node is used to represent a system-on-a-chip (SOC) and must be
present if the processor is a SOC. The top-level soc node contains
information that is global to all devices on the SOC. The node name
should contain a unit address for the SOC, which is the base address
of the memory-mapped register set for the SOC. The name of an soc
node should start with "soc", and the remainder of the name should
represent the part number for the soc. For example, the MPC8540's
soc node would be called "soc8540".
Required properties:
- device_type : Should be "soc"
- ranges : Should be defined as specified in 1) to describe the
translation of SOC addresses for memory mapped SOC registers.
- bus-frequency: Contains the bus frequency for the SOC node.