forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
percpu-vm.c
379 lines (332 loc) · 10.3 KB
/
percpu-vm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/percpu-vm.c - vmalloc area based chunk allocation
*
* Copyright (C) 2010 SUSE Linux Products GmbH
* Copyright (C) 2010 Tejun Heo <[email protected]>
*
* Chunks are mapped into vmalloc areas and populated page by page.
* This is the default chunk allocator.
*/
static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
unsigned int cpu, int page_idx)
{
/* must not be used on pre-mapped chunk */
WARN_ON(chunk->immutable);
return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
}
/**
* pcpu_get_pages - get temp pages array
*
* Returns pointer to array of pointers to struct page which can be indexed
* with pcpu_page_idx(). Note that there is only one array and accesses
* should be serialized by pcpu_alloc_mutex.
*
* RETURNS:
* Pointer to temp pages array on success.
*/
static struct page **pcpu_get_pages(void)
{
static struct page **pages;
size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
lockdep_assert_held(&pcpu_alloc_mutex);
if (!pages)
pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL);
return pages;
}
/**
* pcpu_free_pages - free pages which were allocated for @chunk
* @chunk: chunk pages were allocated for
* @pages: array of pages to be freed, indexed by pcpu_page_idx()
* @page_start: page index of the first page to be freed
* @page_end: page index of the last page to be freed + 1
*
* Free pages [@page_start and @page_end) in @pages for all units.
* The pages were allocated for @chunk.
*/
static void pcpu_free_pages(struct pcpu_chunk *chunk,
struct page **pages, int page_start, int page_end)
{
unsigned int cpu;
int i;
for_each_possible_cpu(cpu) {
for (i = page_start; i < page_end; i++) {
struct page *page = pages[pcpu_page_idx(cpu, i)];
if (page)
__free_page(page);
}
}
}
/**
* pcpu_alloc_pages - allocates pages for @chunk
* @chunk: target chunk
* @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
* @page_start: page index of the first page to be allocated
* @page_end: page index of the last page to be allocated + 1
* @gfp: allocation flags passed to the underlying allocator
*
* Allocate pages [@page_start,@page_end) into @pages for all units.
* The allocation is for @chunk. Percpu core doesn't care about the
* content of @pages and will pass it verbatim to pcpu_map_pages().
*/
static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
struct page **pages, int page_start, int page_end,
gfp_t gfp)
{
unsigned int cpu, tcpu;
int i;
gfp |= __GFP_HIGHMEM;
for_each_possible_cpu(cpu) {
for (i = page_start; i < page_end; i++) {
struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
if (!*pagep)
goto err;
}
}
return 0;
err:
while (--i >= page_start)
__free_page(pages[pcpu_page_idx(cpu, i)]);
for_each_possible_cpu(tcpu) {
if (tcpu == cpu)
break;
for (i = page_start; i < page_end; i++)
__free_page(pages[pcpu_page_idx(tcpu, i)]);
}
return -ENOMEM;
}
/**
* pcpu_pre_unmap_flush - flush cache prior to unmapping
* @chunk: chunk the regions to be flushed belongs to
* @page_start: page index of the first page to be flushed
* @page_end: page index of the last page to be flushed + 1
*
* Pages in [@page_start,@page_end) of @chunk are about to be
* unmapped. Flush cache. As each flushing trial can be very
* expensive, issue flush on the whole region at once rather than
* doing it for each cpu. This could be an overkill but is more
* scalable.
*/
static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
int page_start, int page_end)
{
flush_cache_vunmap(
pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
}
static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
{
unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
}
/**
* pcpu_unmap_pages - unmap pages out of a pcpu_chunk
* @chunk: chunk of interest
* @pages: pages array which can be used to pass information to free
* @page_start: page index of the first page to unmap
* @page_end: page index of the last page to unmap + 1
*
* For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
* Corresponding elements in @pages were cleared by the caller and can
* be used to carry information to pcpu_free_pages() which will be
* called after all unmaps are finished. The caller should call
* proper pre/post flush functions.
*/
static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
struct page **pages, int page_start, int page_end)
{
unsigned int cpu;
int i;
for_each_possible_cpu(cpu) {
for (i = page_start; i < page_end; i++) {
struct page *page;
page = pcpu_chunk_page(chunk, cpu, i);
WARN_ON(!page);
pages[pcpu_page_idx(cpu, i)] = page;
}
__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
page_end - page_start);
}
}
/**
* pcpu_post_unmap_tlb_flush - flush TLB after unmapping
* @chunk: pcpu_chunk the regions to be flushed belong to
* @page_start: page index of the first page to be flushed
* @page_end: page index of the last page to be flushed + 1
*
* Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
* TLB for the regions. This can be skipped if the area is to be
* returned to vmalloc as vmalloc will handle TLB flushing lazily.
*
* As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
* for the whole region.
*/
static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
int page_start, int page_end)
{
flush_tlb_kernel_range(
pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
}
static int __pcpu_map_pages(unsigned long addr, struct page **pages,
int nr_pages)
{
return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
PAGE_KERNEL, pages);
}
/**
* pcpu_map_pages - map pages into a pcpu_chunk
* @chunk: chunk of interest
* @pages: pages array containing pages to be mapped
* @page_start: page index of the first page to map
* @page_end: page index of the last page to map + 1
*
* For each cpu, map pages [@page_start,@page_end) into @chunk. The
* caller is responsible for calling pcpu_post_map_flush() after all
* mappings are complete.
*
* This function is responsible for setting up whatever is necessary for
* reverse lookup (addr -> chunk).
*/
static int pcpu_map_pages(struct pcpu_chunk *chunk,
struct page **pages, int page_start, int page_end)
{
unsigned int cpu, tcpu;
int i, err;
for_each_possible_cpu(cpu) {
err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
&pages[pcpu_page_idx(cpu, page_start)],
page_end - page_start);
if (err < 0)
goto err;
for (i = page_start; i < page_end; i++)
pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
chunk);
}
return 0;
err:
for_each_possible_cpu(tcpu) {
if (tcpu == cpu)
break;
__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
page_end - page_start);
}
pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
return err;
}
/**
* pcpu_post_map_flush - flush cache after mapping
* @chunk: pcpu_chunk the regions to be flushed belong to
* @page_start: page index of the first page to be flushed
* @page_end: page index of the last page to be flushed + 1
*
* Pages [@page_start,@page_end) of @chunk have been mapped. Flush
* cache.
*
* As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
* for the whole region.
*/
static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
int page_start, int page_end)
{
flush_cache_vmap(
pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
}
/**
* pcpu_populate_chunk - populate and map an area of a pcpu_chunk
* @chunk: chunk of interest
* @page_start: the start page
* @page_end: the end page
* @gfp: allocation flags passed to the underlying memory allocator
*
* For each cpu, populate and map pages [@page_start,@page_end) into
* @chunk.
*
* CONTEXT:
* pcpu_alloc_mutex, does GFP_KERNEL allocation.
*/
static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
int page_start, int page_end, gfp_t gfp)
{
struct page **pages;
pages = pcpu_get_pages();
if (!pages)
return -ENOMEM;
if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp))
return -ENOMEM;
if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
pcpu_free_pages(chunk, pages, page_start, page_end);
return -ENOMEM;
}
pcpu_post_map_flush(chunk, page_start, page_end);
return 0;
}
/**
* pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
* @chunk: chunk to depopulate
* @page_start: the start page
* @page_end: the end page
*
* For each cpu, depopulate and unmap pages [@page_start,@page_end)
* from @chunk.
*
* CONTEXT:
* pcpu_alloc_mutex.
*/
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
int page_start, int page_end)
{
struct page **pages;
/*
* If control reaches here, there must have been at least one
* successful population attempt so the temp pages array must
* be available now.
*/
pages = pcpu_get_pages();
BUG_ON(!pages);
/* unmap and free */
pcpu_pre_unmap_flush(chunk, page_start, page_end);
pcpu_unmap_pages(chunk, pages, page_start, page_end);
/* no need to flush tlb, vmalloc will handle it lazily */
pcpu_free_pages(chunk, pages, page_start, page_end);
}
static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
gfp_t gfp)
{
struct pcpu_chunk *chunk;
struct vm_struct **vms;
chunk = pcpu_alloc_chunk(type, gfp);
if (!chunk)
return NULL;
vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
pcpu_nr_groups, pcpu_atom_size);
if (!vms) {
pcpu_free_chunk(chunk);
return NULL;
}
chunk->data = vms;
chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
pcpu_stats_chunk_alloc();
trace_percpu_create_chunk(chunk->base_addr);
return chunk;
}
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
{
if (!chunk)
return;
pcpu_stats_chunk_dealloc();
trace_percpu_destroy_chunk(chunk->base_addr);
if (chunk->data)
pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
pcpu_free_chunk(chunk);
}
static struct page *pcpu_addr_to_page(void *addr)
{
return vmalloc_to_page(addr);
}
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
{
/* no extra restriction */
return 0;
}